Skip to main content
Log in

Additive average Schwarz method for a Crouzeix–Raviart finite volume element discretization of elliptic problems with heterogeneous coefficients

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we introduce an additive Schwarz method for a Crouzeix–Raviart finite volume element discretization of a second order elliptic problem with discontinuous coefficients, where the discontinuities are both inside the subdomains and across and along the subdomain boundaries. We show that, depending on the distribution of the coefficient in the model problem, the parameters describing the generalized minimal residual method (GMRES) convergence rate of the proposed method depend linearly on the mesh parameters . Also, under certain restrictions on the distribution of the coefficient, the convergence of the GMRES method is independent of jumps in the coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24(4), 777–787 (1987). doi:10.1137/0724050

    Article  MathSciNet  MATH  Google Scholar 

  2. Bjørstad, P.E., Dryja, M., Vainikko, E.: Additive Schwarz methods without subdomain overlap and with new coarse spaces. In: Domain Decomposition Methods in Sciences and Engineering (Beijing, 1995), pp. 141–157. Wiley, Chichester (1997)

  3. Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. 65(215), 897–921 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Brenner, S.C., Sung, L.Y.: Balancing domain decomposition for nonconforming plate elements. Numer. Math. 83(1), 25–52 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, X.C.: Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic partial differential equations. ProQuest LLC, Ann Arbor, MI (1989). Thesis (Ph.D.)—New York University. http://search.proquest.com/docview/303799778?accountid=8579

  7. Cai, X.C., Widlund, O.B.: Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Stat. Comput. 13(1), 243–258 (1992). doi:10.1137/0913013

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, Z.Q.: On the finite volume element method. Numer. Math. 58(7), 713–735 (1991). doi:10.1007/BF01385651

    MathSciNet  MATH  Google Scholar 

  9. Chatzipantelidis, P.: A finite volume method based on the Crouzeix–Raviart element for elliptic pde’s in two dimensions. Numer. Math. 82(3), 409–432 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chatzipantelidis, P.: Finite volume methods for elliptic PDE’s: a new approach. M2AN. Math. Model. Numer. Anal. 36(2), 307–324 (2002). doi:10.1051/m2an:2002014

    Article  MathSciNet  MATH  Google Scholar 

  11. Chou, S., Huang, J.: A domain decomposition algorithm for general covolume methods for elliptic problems. J. Numer. Math. Jnma 11(3), 179–194 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dolean, V., Nataf, F., Scheichl, R., Spillane, N.: Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math. 12(4), 391–414 (2012). doi:10.2478/cmam-2012-0027

    Article  MathSciNet  MATH  Google Scholar 

  13. Dryja, M., Sarkis, M.: Additive average Schwarz methods for discretization of elliptic problems with highly discontinuous coefficients. Comput. Methods Appl. Math. 10(2), 164–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888 (2002). doi:10.1137/S0036142900368873

    Article  MathSciNet  MATH  Google Scholar 

  16. Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8(4), 1461–1483 (2010). doi:10.1137/090751190

    Article  MathSciNet  MATH  Google Scholar 

  17. Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces. Multiscale Model. Simul. 8(5), 1621–1644 (2010). doi:10.1137/100790112

    Article  MathSciNet  MATH  Google Scholar 

  18. Graham, I.G., Lechner, P.O., Scheichl, R.: Domain decomposition for multiscale PDEs. Numer. Math. 106(4), 589–626 (2007). doi:10.1007/s00211-007-0074-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Hackbusch, W.: On first and second order box schemes. Computing 41(4), 277–296 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997). doi:10.1006/jcph.1997.5682

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, Y., Liu, J., Yang, M.: Finite volume element methods: an overview on recent developments. Int. J. Numer. Anal. Model. Ser. B 4(1), 14–34 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Marcinkowski, L.: The mortar element method with locally nonconforming elements. BIT Numer. Math. 39(4), 716–739 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marcinkowski, L., Rahman, T., Loneland, A., Valdman, J.: Additive Schwarz preconditioner for the general finite volume element discretization of symmetric elliptic problems. BIT Numer. Math. (2015). doi:10.1007/s10543-015-0581-x

  24. Rahman, T., Xu, X., Hoppe, R.: Additive Schwarz methods for the Crouzeix–Raviart mortar finite element for elliptic problems with discontinuous coefficients. Numer. Math. 101(3), 551–572 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rui, H., Bi, C.: Convergence analysis of an upwind finite volume element method with Crouzeix–Raviart element for non-selfadjoint and indefinite problems. Front. Math. China 3(4), 563–579 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saad, Y., Schultz, M.H.: Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sarkis, M.: Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements. Numer. Math. 77(3), 383–406 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  29. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126(4), 741–770 (2014). doi:10.1007/s00211-013-0576-y

    Article  MathSciNet  MATH  Google Scholar 

  30. Toselli, A., Widlund, O.B.: Domain Decomposition Methods: Algorithms and Theory, vol. 34. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  31. Wu, H., Li, R.: Error estimates for finite volume element methods for general second-order elliptic problems. Numer. Methods Partial Differ. Equ. 19(6), 693–708 (2003). doi:10.1002/num.10068

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, S.: On domain decomposition algorithms for covolume methods for elliptic problems. Comput. Methods Appl. Mech. Engrg. 196(1–3), 24–32 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Petter Bjørstad and Professor Maksymilian Dryja for their valuable comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Loneland.

Additional information

L. Marcinkowski was partially supported by the Polish Scientific Grant 2011/01/B/ST1/01179 and Chinese Academy of Science Project: 2013FFGA0009 - GJHS20140901004635677.

T. Rahman acknowledges the support from the NRC through the DAADppp project 233989.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loneland, A., Marcinkowski, L. & Rahman, T. Additive average Schwarz method for a Crouzeix–Raviart finite volume element discretization of elliptic problems with heterogeneous coefficients. Numer. Math. 134, 91–118 (2016). https://doi.org/10.1007/s00211-015-0771-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0771-0

Mathematics Subject Classification

Navigation