Skip to main content
Log in

Analysis of the hydrostatic Stokes problem and finite-element approximation in unstructured meshes

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The stability of velocity and pressure mixed finite-element approximations in general meshes of the hydrostatic Stokes problem is studied, where two “inf-sup” conditions appear associated to the two constraints of the problem; namely incompressibility and hydrostatic pressure. Since these two constraints have different properties, it is not easy to choose finite element spaces satisfying both. From the analytical point of view, two main results are established; the stability of an anisotropic approximation of the velocity (using different spaces for horizontal and vertical velocities) with piecewise constant pressures, and the unstability of standard (isotropic) approximations which are stable for the Stokes problem, like the mini-element or the Taylor-Hood element. Moreover, we give some numerical simulations, which agree with the previous analytical results and allow us to conjecture the stability of some anisotropic approximations of the velocity with continuous piecewise linear pressure in unstructured meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Azérad, P., Guillén, F.: Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics. Siam J. Math. Anal. 33(4), 847–859 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Azérad, P.: Analyse et approximation du problème de Stokes dans un bassin peu profond. C. R. Acad. Sci. Paris Sér. I Math. 318(1), 53–58 (1994)

    MATH  Google Scholar 

  3. Azérad, P.: Analyse des quations de Navier–Stokes en bassin peu profond et de l’quation de transport. Ph.D. thesis, Neuchtel (1996)

  4. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  5. Besson, O., Laydi, M.R.: Some estimates for the anisotropic Navier–Stokes equations and for the hydrostatic approximation. Math. Mod. Num. Anal. 26(7), 855–865 (1992)

    MATH  MathSciNet  Google Scholar 

  6. Cushman-Roisin, B., Beckers, J.M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, New York (2009)

    Google Scholar 

  7. Chacón-Rebollo, T., Guillén-González, F.: An intrinsic analysis of the hydrostatic approximation of Navier–Stokes equations. C. R. Acad. Sci. Paris Srie I 330, 841–846 (2000)

  8. Chacón-Rebollo, T., Gómez-Mármol, M., Sánchez-Muñoz, I.: Numerical solution of the primitive equations of the ocean by the orthogonal sub-scales vms method. Appl. Numer. Math. 62, 342–359 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  10. Chacón-Rebollo, T., Rodríguez-Gómez, D.: Prismatic finite element solution of the primitive equations of the ocean

  11. Chacón-Rebollo, T., Rodríguez-Gómez, D.: A numerical solver for the primitive equations of the ocean using term-by-term stabilization. Appl. Numer. Math. 55(1), 1–31 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166, 245–267 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  14. Guillén-González, F., Masmoudi, N., Rodríguez-Bellido, M.A.: Anisotropic estimates and strong solutions of the primitive equations. Differ. Integral Equ. 14(11), 1381–1408 (2001)

    MATH  Google Scholar 

  15. Guillén-González, F., Rodríguez-Gómez, D.: Bubble finite elements for the primitive equations of the ocean. Numerische Mathematik 101, 689–728 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guillén-González, F., Rodríguez-Galván, J.R.: On the stability of approximations for the stokes problem using different finite element spaces for each component of the velocity. Submitted. Available at http://www.uca.es/dpto/C101/pags-personales/rafael.rodriguez/papers/stokes-velocity-fespaces.pdf (2012)

  17. Kimmritz, M.: Equal-order Finite Elements of Hydrostatic Flow Problems. Ph.D. thesis, Kiel (2013)

  18. Lions, J.-L., Temam, R., Wang, S.: New formulations of the primitive equations of the atmosphere and applications. Nonlinearity 5, 237–288 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lions, J.-L., Temam, R., Wang, S.: On the equations of large scale ocean. Nonlinearity 5, 1007–1053 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ortegón-Gallego, F.: On distributions independent of xn in certain non-cylindrical domains and a de rham lemma with a non-local constraint. Nonlinear Anal. Theory Methods Appl. 59(3), 335–345 (2004)

    Article  MATH  Google Scholar 

  21. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    Book  MATH  Google Scholar 

  22. Pironneau, O., Hecht, F., Le Hyaric, A., Morice, J.: FreeFEM++. http://www.freefem.org/

  23. Stenberg, R.: A technique for analysing finite elements methods for viscuous incompressible flow. Int. J. Numer. Methods Fluids 11, 835–948 (1990)

    Article  MathSciNet  Google Scholar 

  24. Temam, R.: Navier–Stokes equations: theory and numerical analysis. American Mathematical Society, New York (1977)

    MATH  Google Scholar 

  25. Temam, R.: Some mathematical aspects of geophysical fluid dynamic equations. Milan J. Math. 71, 175–198 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. In: Friedlander, Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 3, pp. 535–658. Elsevier, New York (2004)

    Chapter  Google Scholar 

  27. Ziane, M.: Regularity results for stokes type systems. Appl. Anal. 58, 263–292 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Guillén-González.

Additional information

The first author has been partially supported by projects MTM2009-12927 and MTM2012-32325 (DGI-MEC, Spain) and the second one by the research group FQM-315 (Junta de Andalucía).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillén-González, F., Rodríguez-Galván, J.R. Analysis of the hydrostatic Stokes problem and finite-element approximation in unstructured meshes. Numer. Math. 130, 225–256 (2015). https://doi.org/10.1007/s00211-014-0663-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0663-8

Mathematics Subject Classification

Navigation