Skip to main content
Log in

On a family of high-order iterative methods under gamma conditions with applications in denoising

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study a class of at least third order iterative methods for nonlinear equations on Banach spaces. A characterization of the convergence under Gamma-type conditions is presented. Though, in general, these methods are not very extended due to their computational costs, we can find examples in which they are competitive and even cheaper than other simpler methods. Indeed, we propose a new nonlinear mathematical model for the denoising of digital images, where the best method in the family has fourth order of convergence. Moreover, our family includes two-step Newton type methods with good numerical behavior in general. We center our analysis in both, analytic and computational, aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alefeld, G.E.: On the convergence of Halley’s method. Am. Math. Monthly. 88(7), 530–536 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amat, S., Ruiz, J., Trillo, J.C.: Fast multiresolution algorithms and their related variational problems for image denoising. J. Sci. Comp. 43(1), 1–23 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Argyros, I.K., Chen, D.: Results on the Chebyshev method in Banach spaces. Proyecciones 12(2), 119–128 (1993)

    MATH  MathSciNet  Google Scholar 

  4. Argyros, I.K.: The convergence of a Halley-Chebyshev-type method under Newton-Kantorovich hypotheses. Appl. Math. Lett. 6(5), 71–74 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Argyros, I.K.: An inverse free Newton-Jarrat-type iterative method for solving equations under gamma condition. J. Appl. Math. Comput. 28(1–2), 15–28 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Candela, V.F., Marquina, A.: Recurrence relations for rational cubic methods I: the Halley method. Computing 44, 169–184 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Candela, V.F., Marquina, A.: Recurrence relations for rational cubic methods II: the Chebyshev method. Computing 45, 355–367 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan, T., Esedoglu, S., Park, F., Yip, A.: Total variation image restoration: overview and recent developments. Handbook of mathematical models in computer vision, pp. 17–31. Springer, New York (2006)

  9. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chan, T.F., Mulet, P.: Iterative methods for total variation image restoration. Iterative methods in scientific computing (Hong Kong, 1995), pp/ 359–381. Springer, Singapore (1997)

  11. Chan, T.F., Shen, J., Vese, L.: Variational PDE models in image processing. Not. Am. Math. Soc. 50(1), 14–26 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Chun, C.: Construction of third-order modifications of Newton’s method. Appl. Math. Comput. 189, 662–668 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Salanova, M.A.: Chebyshev-like methods and quadratic equations. Rev. Anal. Numer. Theor. Approx. 28(1), 23–35 (2000)

    Google Scholar 

  14. Ezquerro, J.A., Hernández, M.A., Romero, N.: A modification of Cauchy’s method for quadratic equations. J. Math. Anal. Appl. 339, 954–969 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hernández, M.A., Romero, N.: On a characterization of some Newton-like methods of R-order at least three. J. Comput. Appl. Math. 183(1), 53–66 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Househölder, A.S.: The Numerical Treatment of a Single Nonlinear Equation. McGraw-Hill, New York (1970)

    Google Scholar 

  17. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

  18. Kou, J.: Some new sixth-order methods for solving non-linear equations. Appl. Math. Comput. 189, 647–651 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kou, J., Li, Y.: A family of modified super-Halley methods with fourth-order convergence. Appl. Math. Comput. 189, 366–370 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kou, J., Wang, X.: Some variants of Chebyshev-Halley methods for solving nonlinear equations. Appl. Math. Comput. 189, 1839–1843 (2007)

    Article  MathSciNet  Google Scholar 

  21. Marquina, A., Osher, S.: Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. SIAM J. Sci. Comput. 22(2), 387–405 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Noor, M.A., Khan, W.A., Hussain, A.: A new modified Halley method without second derivatives for nonlinear equation. Appl. Math. Comput. 189(2), 1268–1273 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Potra, F.A., Pták, V.: Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics, vol. 103. Pitman, Boston (1984)

  24. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  25. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Pose Problems. Wiley, New York (1997)

    Google Scholar 

  26. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  27. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Stat. Comput. 17, 227–238 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

S. Amat: Research supported in part by the Spanish grants MINECO-FEDER MTM2010-17508 and 08662/PI/08. The second and third authors are partly supported by MINECO-FEDER MTM 2011-28636-C02-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amat, S., Hernández, M.A. & Romero, N. On a family of high-order iterative methods under gamma conditions with applications in denoising. Numer. Math. 127, 201–221 (2014). https://doi.org/10.1007/s00211-013-0589-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0589-6

Mathematics Subject Classifications

Navigation