Skip to main content
Log in

Adaptive wavelet methods for elliptic partial differential equations with random operators

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We apply adaptive wavelet methods to boundary value problems with random coefficients, discretized by wavelets in the spatial domain and tensorized polynomials in the parameter domain. Greedy algorithms control the approximate application of the fully discretized random operator, and the construction of sparse approximations to this operator. We suggest a power iteration for estimating errors induced by sparse approximations of linear operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As above, \(\log ^+x :=\log (\max (x,1))\).

  2. Proposition 4.3 initially only implies that the first term in (9.1) is bounded by the third. However, if (9.1) does not hold, we can replace \(\bar{e}_{0,j_0(r)}\) by \(\tilde{d}_{0,s} r^{-s}\) in (8.1).

  3. This heuristic is actually used to distribute tolerances for a subproblem in [24, 27]; it is not clear whether the resulting error in the approximation of \(u\) is distributed evenly among all active coefficients.

References

  1. Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004). (electronic)

    Google Scholar 

  2. Barinka, A.: Fast evaluation tools for adaptive wavelet schemes. Ph.D. thesis, RWTH Aachen (2005)

  3. Barinka, A., Dahlke, S., Dahmen, W.: Adaptive application of operators in standard representation. Adv. Comput. Math. 24(1–4), 5–34 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bauer, H.: Wahrscheinlichkeitstheorie, 5th edn. de Gruyter Lehrbuch [de Gruyter Textbook]. Walter de Gruyter & Co., Berlin (2002)

    Google Scholar 

  5. Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretization of elliptic SPDEs. SIAM J. Sci. Comput. 31(6), 4281–4304 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bieri, M., Schwab, C.: Sparse high order FEM for elliptic sPDEs. Comput. Methods Appl. Mech. Eng. 198(13–14), 1149–1170 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cioica, P., Dahlke, S., Döhring, N., Kinzel, S., Lindner, F., Raasch, T., Ritter, K., Schilling, R.: Adaptive wavelet methods for elliptic stochastic partial differential equations. Tech. rep., DFG 1324 (2011)

  8. Cohen, A.: Numerical Analysis of Wavelet Methods, Studies in Mathematics and its Applications, vol. 32. North-Holland Publishing Co., Amsterdam (2003)

    Google Scholar 

  9. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comput. 70(233), 27–75 (2001). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods. II. Beyond the elliptic case. Found. Comput. Math. 2(3), 203–245 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best \(N\)-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10(6), 615–646 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cohen, A., DeVore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.) 9(1), 11–47 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  14. Dahlke, S., Fornasier, M., Primbs, M., Raasch, T., Werner, M.: Nonlinear and adaptive frame approximation schemes for elliptic PDEs: theory and numerical experiments. Numer. Methods Partial Differ. Equ. 25(6), 1366–1401 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dahlke, S., Fornasier, M., Raasch, T.: Adaptive frame methods for elliptic operator equations. Adv. Comput. Math. 27(1), 27–63 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dahlke, S., Raasch, T., Werner, M., Fornasier, M., Stevenson, R.: Adaptive frame methods for elliptic operator equations: the steepest descent approach. IMA J. Numer. Anal. 27(4), 717–740 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dahmen, W., Rohwedder, T., Schneider, R., Zeiser, A.: Adaptive eigenvalue computation: complexity estimates. Numer. Math. 110(3), 277–312 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Deb, M.K., Babuška, I.M., Oden, J.T.: Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190(48), 6359–6372 (2001)

    Google Scholar 

  19. DeVore, R.A.: Nonlinear approximation. In: Acta Numerica, Vol. 7, pp. 51–150. Cambridge University Press, Cambridge (1998)

  20. Dijkema, T.J., Schwab, C., Stevenson, R.: An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx. 30(3), 423–455 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Frauenfelder, P., Schwab, C., Todor, R.A.: Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194(2–5), 205–228 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gantumur, T., Harbrecht, H., Stevenson, R.: An optimal adaptive wavelet method without coarsening of the iterands. Math. Comput. 76(258), 615–629 (2007). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gittelson, C.J.: Adaptive Galerkin methods for parametric and stochastic operator equations, Ph.D. thesis. ETH Zürich, ETH Dissertation No. 19533 (2011)

  24. Gittelson, C.J.: Adaptive stochastic Galerkin methods: Beyond the elliptic case, Tech. Rep. 2011–2012, Seminar for Applied Mathematics, ETH Zürich (2011)

  25. Gittelson, C.J.: Stochastic Galerkin approximation of operator equations with infinite dimensional noise, Tech. Rep. 2011–10. Seminar for Applied Mathematics, ETH Zürich (2011)

  26. Gittelson, C.J.: Uniformly convergent adaptive methods for a class of parametric operator equations. ESAIM. Math. Model. Numer. Anal. 46, 1485–1508 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gittelson, C.J.: An adaptive stochastic galerkin method for random elliptic operators. Math. Comput. 82(283), 1515–1541 (2013)

    Google Scholar 

  28. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(12–16), 1295–1331 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Metselaar, A.: Handling wavelet expansions in numerical methods, Ph.D. thesis. University of Twente (2002)

  30. Nguyen, H., Stevenson, R.: Finite element wavelets with improved quantitative properties. J. Comput. Appl. Math. 230(2), 706–727 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schwab, C., Gittelson, C.J.: Sparse tensor discretization of high-dimensional parametric and stochastic PDEs. In: Acta Numerica, Vol. 20, pp. 291–467. Cambridge University Press, Cambridge (2011)

  32. Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78(267), 1293–1318 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Stevenson, R.: Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41(3), 1074–1100 (2003). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  34. Stevenson, R.: On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal. 35(5), 1110–1132 (2004). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  35. Stevenson, R.: Adaptive wavelet methods for solving operator equations: an overview. In: Multiscale, Nonlinear and Adaptive Approximation, pp. 543–597. Springer, Berlin (2009)

  36. Todor, R.A., Schwab, C.: Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27(2), 232–261 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wan, X., Karniadakis, G.E.: An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209(2), 617–642 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wan, X., Karniadakis, G.E.: Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28(3), 901–928 (2006). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  39. Xiu, D.: Fast numerical methods for stochastic computations: a review. Commun. Comput. Phys. 5(2–4), 242–272 (2009)

    MathSciNet  Google Scholar 

  40. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Swiss National Science Foundation grant No. 200021-120290/1. The author expresses his gratitude to Ch. Schwab for his many insightful remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Jeffrey Gittelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gittelson, C.J. Adaptive wavelet methods for elliptic partial differential equations with random operators. Numer. Math. 126, 471–513 (2014). https://doi.org/10.1007/s00211-013-0572-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0572-2

Mathematics Subject Classification (2000)

Navigation