Skip to main content
Log in

On the properties of Sard kernels and multiple error estimates for bounded linear functionals of bivariate functions with application to non-product cubature

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Each Sard kernels theorem supplies multiple error estimates for a bounded linear functional, provided the underlying multivariate function is sufficiently smooth. The error estimation due to Sard generally concerns the \(L_1\)-norms of Sard kernels and the supremum norms of different partial derivatives of a given function. This article presents a verified method for computing Sard error constants. To assist the verified computation, we examine relevant properties of Sard kernels for general bounded linear functionals of bivariate functions. The derived \(L_1\)-norms, together with interval Taylor arithmetic, make the multiple error estimates possible. We demonstrate the flexibility and superiority of Sard kernels method by different numerical examples that concern non-product cubature for bivariate functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alefeld, G., Herzberger, J.: Introduction to interval computations. Academic Press, New York (1983)

    MATH  Google Scholar 

  2. Barnhill, R.E., Pilcher, D.T.: Sard Kernels for certain bivariate cubatures. Commun. ACM 16(9), 567–570 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnhill, R.E., Gregory, J.A.: Sard Kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25, 215–229 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berz, M., Makino, K.: New methods for high-dimensional verified quadrature. Reliab. Comput. 5, 13–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berz, M., Makino, K.: Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. 4(4), 379–456 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Birkhoff, G., Schultz, M.H., Varga, R.S.: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math. 11, 232–256 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brass, H., Petras, K.: Quadrature Theory. http://www-public.tu-bs.de:8080/~petras/book/qt.pdf

  8. Chen, C.-Y.: Adaptive numerische Quadratur und Kubatur mit automatischer Ergebnisverifikation, PhD thesis. University of Karlsruhe (1998)

  9. Chen, C.-Y.: Computing interval enclosures for definite integrals by application of triple adaptive strategies. Computing 78(1), 81–99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, C.-Y.: Verified computed Peano constants and applications in numerical quadrature. BIT 47(2), 297–312 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, C.-Y.: Bivariate product cubature using Peano Kernels for local error estimates. J. Sci. Comput. 36(1), 69–88 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, C.-Y.: Extended interval Newton method based on the precise quotient set. Computing 92(4), 297–315 (2011). doi:10.1007/s00607-011-0145-0

    Google Scholar 

  13. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  14. Dietrich, S.: Verifizierte Konstruktion vollsymmertrischer Kubaturformeln mit geringer Stützstellenanzahl. Diplomarbeit, University of Karlsruhe (1995)

    Google Scholar 

  15. Eiermann, M.C.: Automatic, guaranteed integration of analytic functions. BIT 29, 270–282 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Engels, H.: Numerical Quadrature and Cubature. Academic Press, London (1980)

    MATH  Google Scholar 

  17. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Verified Computing I. Springer, Berlin (1993)

    MATH  Google Scholar 

  18. Hansen, E.: On solving systems of equations using interval arithmetic. Math. Comput. 22, 374–384 (1968)

    Article  MATH  Google Scholar 

  19. Herbort, S., Ratz, D.: Improving the efficiency of a nonlinear-system-solver using a componentwise Newton method, Technical report 2/1997. University of Karlsruhe, Institute for applied mathematics (1997)

    Google Scholar 

  20. Kelch, R.: Numerical Quadrature by Extrapolation with Automatic Result Verification. In: Adams, E., Kulisch, U. (eds.) Scientific Computing with Automatic Result Verification, pp. 143–185. Academic Press, San Diego (1993)

    Chapter  Google Scholar 

  21. Kulisch, U.W.: Arithmetic operations for floating-point intervals, as Motion 5 accepted by the IEEE Standards Committee P1788 as definition of the interval operations. (2010) See [31].

  22. Labedzki, A., Wajda, W.: Sard Kernel Theorems and Interpolation Remainder Theory on Perpendicular Parallelepipeds. Functiones et Approximatio 12, 127–140 (1982)

    MathSciNet  MATH  Google Scholar 

  23. Lether, F.G.: Cross-product cubature error bounds. Math. Comput. 24(111), 583–592 (1970)

    Article  MathSciNet  Google Scholar 

  24. Lether, F.G.: An error representation for product cubature rules. SIAM. J. Numer. Anal. 7(3), 363–365 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lether, F.G.: Cubature error bounds for Gauss–Legendre product rules. SIAM. J. Numer. Anal. 8(1), 36–42 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lether, F.G.: Error bounds for fully symmetric cubature rules. SIAM. J. Numer. Anal. 8(1), 49–60 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  27. Neumaier, A.: The enclosure of solutions of parameter-dependent systems of equations. In: Moore, R.E. (ed.) Reliability in Computing, pp. 269–286. Academic Publisher, San Diego (1988)

  28. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, New York (1990)

    MATH  Google Scholar 

  29. Petras, K.: Self-validating integration and approximation of piecewise analytic functions. J. Comput. Appl. Math. 145, 345–359 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Petras, K.: Principles of verified numerical integration. J. Comput. Appl. Math. 199, 317–328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pryce, J. (ed.): P1788: IEEE Standard for Interval Arithmetic Version 02.2 (April 4, 2010). http://grouper.ieee.org/groups/1788/email/pdfOWdtH2mOd9.pdf

  32. Rall, L.B.: Automatic Differentiation: Techniques and Applications. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  33. Ratz, D.: On the selection of subdivision directions in interval branch-and-bound methods for global optimization. J. Glob. Optim. 7, 183–207 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions. Ellis Horwood Limited, Chichester (1984)

    MATH  Google Scholar 

  35. Sard, A.: Linear Approximation. American Mathematical Society, Providence (1963)

    MATH  Google Scholar 

  36. Stancu, D.D.: The remainder of certain linear approximation formulas in two variables. SIAM J. Numer. Anal. 1, 137–163 (1964)

    MathSciNet  Google Scholar 

  37. Stenger, F.: Error bounds for the evaluation of integrals by repeated Gauss-type formulae. Numer. Math. 9, 200–213 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Englewood Cliffs, Pretince Hall (1971)

    MATH  Google Scholar 

  39. Stroud, A.H., Secrest, D.: Gaussian Quadrature Formulas. Englewood Cliffs, Pretince Hall (1966)

    MATH  Google Scholar 

Download references

Acknowledgments

The support of this work by the National Science Council of Taiwan under Project No. NSC 97-2115-M-415-002- and NSC 100-2115-M-415-002- is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Yun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CY. On the properties of Sard kernels and multiple error estimates for bounded linear functionals of bivariate functions with application to non-product cubature. Numer. Math. 122, 603–643 (2012). https://doi.org/10.1007/s00211-012-0471-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0471-y

Mathematics Subject Classification (2000)

Navigation