Skip to main content
Log in

Analysis of the fully discrete fat boundary method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The Fat Boundary Method is a method of the Fictitious Domain class, which was proposed to solve elliptic problems in complex geometries with non-conforming meshes. It has been designed to recover optimal convergence at any order, despite of the non-conformity of the mesh, and without any change in the discrete Laplace operator on the simple shape domain. We propose here a detailed proof of this high-order convergence, and propose some numerical tests to illustrate the actual behaviour of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angot P., Bruneau C.H., Fabrie P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81(4), 497–520 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angot P., Ramière I.: Convergence analysis of the Q1-finite element method for elliptic problems with non boundary-fitted meshes. Int. J. Numer. Method Eng. 75(9), 1007–1052 (2008)

    Article  Google Scholar 

  3. Babuška I.: The finite element method with penalty. Math. Comp. 27, 221–228 (1973)

    MATH  MathSciNet  Google Scholar 

  4. Bertoluzza S.: Interior estimates for the wavelet galerkin method. Numer. Math. 78, 1–20 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertoluzza, S.: The discrete commutator property of approximation spaces. C.R. Acad. Sci. Paris, Série I 329, pp. 1097–1102 (1999)

  6. Bertoluzza, S.: Local boundary estimates for the lagrange multiplier discretization of dirichlet bvp with applications to domain decomposition. Calcolo 43(3) (2006)

  7. Bertoluzza, S., Ismail, M., Maury, B.: The fat boundary method: semi-discrete scheme and some numerical experiments. In: Domain Decomposition Methods in Science and Engineering. Lect. Notes Comput. Sci. Eng., vol. 40, pp. 513–520. Springer, Berlin (2005)

  8. Brezis H.: Analyse fonctionnelle, Théorie et applications. Masson, Paris (1983)

    MATH  Google Scholar 

  9. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991)

    Google Scholar 

  10. Ciarlet P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  11. Codina R., Houzeaux G., Coppola-Owen H., Baiges J.: The fixed-mesh ALE approach for the numerical approximation of flows in moving domains. J. Comput. Phys. 228, 1591–1611 (2008)

    Article  MathSciNet  Google Scholar 

  12. Feng Z., Michaelides E.: Proteus: a direct forcing method in the simulations of particulate flows. J. Comput. Phys. 202(1), 20–51 (2005)

    Article  MATH  Google Scholar 

  13. Girault V., Glowinski R.: Error analysis of a fictitious domain method applied to a Dirichlet problem. Jpn J. Ind. Appl. Math. 12(3), 487–514 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Griffith B., Peskin C.: On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems. J. Comput. Phys. 208(1), 75–105 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grisvard P.: Elliptic Problems in Nonsmooth Domains. Pitman, London (1985)

    MATH  Google Scholar 

  16. Haslinger J., Renard Y.: A new fictitious domain approach inspired by the extended finite element method. SIAM J. Numer. Anal. 47(2), 1474–1499 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hecht, F., Pironneau, O.: A Finite Element Software for PDEs : FreeFEM++ (http://www.freefem.org/)

  18. Lenoir M.: Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23(3), 1–20 (1986)

    Article  MathSciNet  Google Scholar 

  19. LeVeque R., Li Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Luo X., Maxey M., Karniadakis G.: Smoothed profile method for particulate flows: error analysis and simulations. J. Comput. Phys. 228, 1750–1769 (2008)

    Article  MathSciNet  Google Scholar 

  21. Maury B.: A fat boundary method for the Poisson problem in a domain with holes. J. Sci. Comput. 16(3), 319–339 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Maury B.: Numerical analysis of a finite element volume penalty method. SIAM J. Numer. Anal. 47(2), 1126–1148 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nitsche J., Schatz A.: Interior estimates for Ritz–Galerkin methods. Math. Comp. 28, 937–958 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  24. Oevermann M., Klein R.: A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces. J. Comput. Phys. 219(2), 749–769 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pan T.W., Glowinski R.: Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow. J. Comput. Phys. 181(1), 260–279 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pedercin M., Patera A.T., Cruz M.E.: Variational bound finite element methods for three-dimensional creeping porous media and sedimentation flows. Int. J. Numer. Methods Fluids 26(2), 145–175 (1998)

    Article  Google Scholar 

  27. Peskin C.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  28. Peskin, C.: The immersed boundary method. Acta Numer. pp. 479–517 (2002)

  29. Prosperetti A., Og̃uz H.: Physalis: a new o(N) method for the numerical simulation of disperse systems: potential flow of spheres. J. Comput. Phys. 167, 196–216 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Russel D., Wang Z.: A cartesian grid method for modeling multiple moving objects in 2d incompressible viscous flow. J. Comput. Phys. 191, 177–205 (2003)

    Article  MathSciNet  Google Scholar 

  31. Saul’ev V.: Solution of certain boundary-value problems on high-speed computers by the fictitious-domain method. Sibirsk. Mat. Z̆. 4, 912–925 (1963)

    MathSciNet  Google Scholar 

  32. Serbin, L.: A computational investigation of least squares and other projection methods for the approximate solution of boundary value problems. Ph.D. thesis, Cornell University, Ithaca, N. Y. (1971)

  33. Vos P., van Loon R., Sherwin S.: A comparison of fictitious domain methods appropriate for spectral/hp element discretisations. Comput. Methods Appl. Mech. Eng. 197(25–28), 2275–2289 (2008)

    MATH  Google Scholar 

  34. Zhang Z., Prosperetti A.: A second-order method for three-dimensional particle simulation. J. Comput. Phys. 210(1), 292–324 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Maury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertoluzza, S., Ismail, M. & Maury, B. Analysis of the fully discrete fat boundary method. Numer. Math. 118, 49–77 (2011). https://doi.org/10.1007/s00211-010-0317-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0317-4

Mathematics Subject Classification (2000)

Navigation