Skip to main content
Log in

A hybrid method for computing Lyapunov exponents

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we propose a numerical method for computing all Lyapunov coefficients of a discrete time dynamical system by spatial integration. The method extends an approach of Aston and Dellnitz (Comput Methods Appl Mech Eng 170:223–237, 1999) who use a box approximation of an underlying ergodic measure and compute the first Lyapunov exponent from a spatial average of the norms of the Jacobian for the iterated map. In the hybrid method proposed here, we combine this approach with classical QR-oriented methods by integrating suitable R-factors with respect to the invariant measure. In this way we obtain approximate values for all Lyapunov exponents. Assuming somewhat stronger conditions than those of Oseledec’ multiplicative theorem, these values satisfy an error expansion that allows to accelerate convergence through extrapolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aston P.J., Dellnitz M.: Computation of the Lyapunov exponent via spatial integration with application to blowout bifurcations. Comput. Methods Appl. Mech. Eng. 170, 223–237 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aston P.J., Dellnitz M.: Computation of the dominant Lyapunov exponent via spatial Integration using matrix norms. Proc. Roy. Soc. Lond. A 459, 2933–2955 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aston, P.J., Dellnitz, M.: Computation of the dominant Lyapunov exponent via spatial integration using vector norms. In: Fiedler, B., Gröger, K., Sprekels, J. (eds.) Proceedings of the Equadiff, vol. 99, 1015–1020. World Scientific (2000)

  4. Barreira, L., Pesin, Y.B.: Lyapunov Exponents and Smooth Ergodic Theory. University Lecture Series, vol. 23. The American Mathematical Society (2002)

  5. Bekryaev, R.V.: Intermittent chaos and large-scale circulation regimes in the atmosphere. Atmospheric and Oceanic Physics 31(4), 1996 (English), July–August 1995 (Russian)

  6. Beyn, W.-J., Lust, A.: Error analysis of a hybrid method for computing Lyapunov exponents. Manuscript (2009)

  7. Bridges T.J., Reich S.: Computing Lyapunov exponents on a Stiefel manifold. Phys. D 156, 219–238 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Christiansen F., Rugh H.H.: Computing Lyapunov spectra with continous Gram-Schmidt orthonormalization. Nonlinearity 10, 1063–1072 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dellnitz M., Froyland G., Junge O.: The algorithms behind GAIO—Set oriented numerical methods for dynamical systems. In: Fiedler, B. (eds) Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems, pp. 145–174. Springer, Heidelberg (2001)

    Google Scholar 

  10. Dellnitz M., Hohmann A.: A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75, 293–317 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dellnitz M., Junge O.: On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36(2), 491–515 (1999)

    Article  MathSciNet  Google Scholar 

  12. Dellnitz, M., Junge, O.: Set Oriented Numerical Methods for Dynamical Systems. In: Fiedler, B., Iooss, G., Kopell, N. (eds.) Handbook of Dynamical Systems II: Towards Applications, pp. 221–264. World Scientific (2002)

  13. Dieci L., van Vleck E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Appl. Num. Math. 17, 275–291 (1995)

    Article  MATH  Google Scholar 

  14. Dieci L., van Vleck E.S.: Lyapunov spectral intervals: theory and computation. SIAM J. Math. Anal. 40(2), 516–542 (2002)

    MATH  Google Scholar 

  15. Dieci L., van Vleck E.S.: On the error in computing Lyapunov exponents by QR methods. Numer. Math. 101(4), 619–642 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dieci L., van Vleck E.S.: Perturbation theory for approximation of Lyapunov exponents by QR methods. J. Dynam. Differ. Equ. 18(3), 815–840 (2006)

    Article  MATH  Google Scholar 

  17. Eckmann J.-P., Ruelle D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3), 617–656 (1985)

    Article  MathSciNet  Google Scholar 

  18. Froyland, G., Judd, K., Mess, A.I., Murano, K.: Lyapunov exponents and triangulation. In: Proceedings of the 1993 International Symposium on Nonlinear Theory and its Applications. Hawaii, pp. 281–286 (1993)

  19. Froyland G., Judd K., Mess A.I.: Estimation of Lyapunov exponents of dynamical systems using a spatial average. Phys. Rev. E 51(4), 2844–2855 (1995)

    Article  MathSciNet  Google Scholar 

  20. Geist K., Parlitz U., Lauterborn W.: Comparison of different methods for computig Lyapunov exponents. Prog. Theor. Phys. 83(5), 875–893 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Golub G.H., van Loan C.F.: Matrix Computations, 2nd edn. The Johns Hopkins University Press, Baltimore (1990)

    Google Scholar 

  22. Johnson R.A., Palmer K.J., Sell G.R.: Ergodic properties of linear dynamical systems. SIAM J. Math. Anal. 18(1), 1–33 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Katok A., Hasselblatt B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, London (1995)

    MATH  Google Scholar 

  24. Liapunow, A.M.: The General Problem of the Stability of Motion. Comm. Soc. Math. Kharkow 1892 (Russian); [reprinted in English, Taylor & Francis, London 1992]

  25. Lundström, N.: Bifurcations and strange attractors in a climate related system. Differ. Equ. Control Process. (Electronic Journal) 1 (2005)

  26. Lust, A.: Numerische Methoden zur Berechnung von Liapunow-Exponenten in dynamischen Systemen. Masters Thesis, Bielefeld University (2002)

  27. Lust, A.: Eine hybride Methode zur Berechnung von Liapunow-Exponenten, PhD thesis, Universität Bielefeld (2006) http://www.math.uni-bielefeld.de/~beyn/AG_Numerik/html/en/preprints/misc01_06.html

  28. Oseledets V.I.: Multiplicative ergodic theorem: Characteristic Lyapunov exponents of dynamical systems. Trudy MMO 19, 179–210 (1968) (in Russian)

    Google Scholar 

  29. Oseledec V.I.: A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trans. Moscow. Math. Soc. 19, 179–210 (1968)

    MathSciNet  Google Scholar 

  30. Reitmann, V.: Reguläre und chaotische Dynamik. B.G. Teubner Verlagsgesellschaft (1996)

  31. Tucker W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sèr. I Math. 328(12), 1197–1202 (1999)

    MATH  Google Scholar 

  32. Walters P.: An Introduction to Ergodic Theory. Springer, Heidelberg (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Jürgen Beyn.

Additional information

W.-J. Beyn and A. Lust was supported by CRC 701 ‘Spectral Analysis and Topological Methods in Mathematics’. The paper is mainly based on the PhD thesis [27] of A. Lust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyn, WJ., Lust, A. A hybrid method for computing Lyapunov exponents. Numer. Math. 113, 357–375 (2009). https://doi.org/10.1007/s00211-009-0236-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0236-4

Mathematics Subject Classification (2000)

Navigation