Skip to main content
Log in

A framework for existence tests based on the topological degree and homotopy

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The invariance of the topological degree under certain homotopies is used to derive a framework for tests to computationally prove the existence of zeros of nonlinear mappings in \({\mathbb {R}^{n}}\) . These tests use interval arithmetic to enclose the range of a function over a box and are provably more general than many other tests like the Moore–Kioustelidis test, a test based on the Krawczyk operator, and another degree–based test published recently. A numerical example is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld G., Herzberger J.: Introduction to Interval Computation. Academic Press, New York (1983)

    Google Scholar 

  2. Alefeld G., Potra F., Shen Z.: On the existence theorems of Kantorovich, Moore and Miranda. In: Alefeld, G., Chen, X.(eds) Topics in Numerical Analysis with Special Emphasis on Nonlinear Problems, Computing Supplementum 15, pp. 21–28. Springer, Wien (2001)

    Google Scholar 

  3. Beelitz, T.: Effiziente Methoden zum Verifizierten Lösen von Optimierungsaufgaben und Nichtlinearen Gleichungssystemen. PhD Thesis, Department of Mathematics (2006)

  4. Beelitz, T., Bischof, C.H., Lang, B., Willems, P.: SONIC—a framework for the rigorous solution of nonlinear problems. Tech. Rep. BUW-SC 2004/7, University of Wuppertal (2004)

  5. Deimling K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    MATH  Google Scholar 

  6. Frommer, A., Hoxha, F., Lang, B.: Proving existence of zeros using the topological degree and interval arithmetic. J. Comp. Appl. Math. (2006). doi: 10.1016/j.cam.2005.07.030

  7. Frommer A., Lang B.: On preconditioners for the Borsuk existence test. Proc. Appl. Math. Mech. 4(1), 638–639 (2004)

    Article  Google Scholar 

  8. Frommer A., Lang B.: Existence tests for solutions of nonlinear equations using Borsuk’s theorem. SIAM J. Numer. Anal. 43(3), 1348–1361 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. GlobSol home page, http://www.mcsu.mu.edu/~globsol

  10. Jansson C.: On self-validating methods for optimization problems. In: Herzberger, J.(eds) Topics in Validated Computation, pp. 381–438. North-Holland, Amsterdam (1994)

    Google Scholar 

  11. Jaulin L., Kieffer M., Didrit O., Walter É.: Applied Interval Analysis. Springer, London (2001)

    MATH  Google Scholar 

  12. Kearfott R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  13. Kearfott, R.B.: Interval fixed point theory. In: Encyclopedia of Optimization, vol. 3, pp.~48–51. Kluwer, Dordrecht (2001)

  14. Mayer G.: Epsilon-inflation in verification algorithms. J.Comput.Appl.Math. 60, 147–169 (1994)

    Article  Google Scholar 

  15. Miranda C.: Un’ osservazione su un teorema di Brouwer. Boll. Un. Math. Ital. 3, 5–7 (1940)

    MATH  MathSciNet  Google Scholar 

  16. Moore R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  17. Moore R.E.: A test for existence of solutions to nonlinear systems. SIAM J. Numer.Anal. 14, 611–615 (1972)

    Article  Google Scholar 

  18. Moore R.E., Kioustelidis J.: A simple test for accuracy of approximate solutions to nonlinear (or linear) systems. SIAM J. Numer. Anal. 17, 521–529 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  19. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambdridge (1990)

  20. Ortega J., Rheinboldt W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  21. Rump S.M.: Solving nonlinear systems with least significant bit accuracy. Computing 29, 183–200 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rump S.M.: Solution of linear and nonlinear algebraic problems with sharp, guaranteed bounds. Defect correction methods. Theory Appl. Comput. Suppl. 5, 147–168 (1984)

    MathSciNet  Google Scholar 

  23. Rump S.M.: Verification methods for dense and sparse systems of equations. In: Herzberger, J.(eds) Topics in Validated Computation, pp. 63–136. North-Holland, Amsterdam (1994)

    Google Scholar 

  24. Rump S.M.: Improved iteration schemes for validation algorithms for dense and sparse nonlinear systems. Computing 57(1), 77–84 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rump S.M.: INTLAB–INTerval LABoratory. In: Csendes, T.(eds) Developments in Reliable Computing, pp. 77–104. Kluwer, Dordrecht (1999)

    Google Scholar 

  26. Schnurr M.: On the proofs of some statements concerning the theorems of Kantorovich, Moore and Miranda. Reliab. Comp. 11, 77–85 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Walster, W.: The extended real interval system (1998). http://www.mscs.mu.edu/~globsol/walster-papers.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beelitz, T., Frommer, A., Lang, B. et al. A framework for existence tests based on the topological degree and homotopy. Numer. Math. 111, 493–507 (2009). https://doi.org/10.1007/s00211-008-0193-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0193-3

Mathematical Subject Classification (2000).

Navigation