Skip to main content
Log in

Runge–Kutta convolution quadrature methods for well-posed equations with memory

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Runge–Kutta based convolution quadrature methods for abstract, well-posed, linear, and homogeneous Volterra equations, non necessarily of sectorial type, are developed. A general representation of the numerical solution in terms of the continuous one is given. The error and stability analysis is based on this representation, which, for the particular case of the backward Euler method, also shows that the numerical solution inherits some interesting qualitative properties, such as positivity, of the exact solution. Numerical illustrations are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Araujo A., Ferreira J.A. and Oliveira P. (2005). Qualitative behaviour of numerical travelling solutions for reaction-diffusion equations with memory. Appl. Anal. 84: 1231–1246

    Article  MATH  MathSciNet  Google Scholar 

  2. Arendt W., Batty C.J.K., Hieber M. and Neubrander F. (2001). Vector-valued Laplace transforms and Cauchy problems. Birkhäuser, Basel

    MATH  Google Scholar 

  3. Bolley C. and Crouzeix M. (1978). Conservation de la positivité lors de la discrétisation des problèmes d’évolution paraboliques. RAIRO Anal. Numér. 12: 237–245

    MATH  MathSciNet  Google Scholar 

  4. Brenner P. and Thomée V. (1979). On rational approximations of semigroups. SIAM J. Numer. Anal. 16: 683–694

    Article  MATH  MathSciNet  Google Scholar 

  5. Crouzeix M., Larsson S., Piskarev S. and Thomée V. (1993). The stability of rational approximations of analytic semigroups. BIT 33: 74–84

    Article  MATH  MathSciNet  Google Scholar 

  6. Cuesta E. and Palencia C. (2003). A numerical method for an integro-differential equation with memory in Banach spaces: Qualitative properties. SIAM J. Numer. Anal. 41: 1232–1241

    Article  MATH  MathSciNet  Google Scholar 

  7. Ehrhardt, M.: Discrete artificial boundary conditions. Ph.D. Thesis, Technische Universität Berlin (2001)

  8. Hersch R. and Kato T. (1979). High-accuracy stable difference schemes for well-posed initial-value problems. SIAM J. Numer. Anal. 16: 670–682

    Article  MathSciNet  Google Scholar 

  9. Horsthemke, W.: Pattern formation in random walks with inertia. In: Kish, L.B., Lindenberg, K., Gingl, Z. (eds.) Noise in Complex Systems and Stochastic Dynamics III, Proceedings of SPIE, vol. 5845, pp. 12–26 (2005)

  10. MacKelvey R. (1965). Spectral measures, generalized resolvents and functions of positive type. J. Math. Anal. Appl. 11: 447–477

    Article  MathSciNet  Google Scholar 

  11. Kovács M. (2005). On positivity, shape and norm-bound preservation of time-stepping methods for semigroups. J. Math. Anal. Appl. 304: 115–136

    Article  MATH  MathSciNet  Google Scholar 

  12. Larsson S., Thomée V. and Wahlbin L. (1991). Finite-element methods for a strongly damped wave equation. IMA J. Numer. Anal. 11: 113–142

    Article  Google Scholar 

  13. Lubich C. (1988). Convolution quadrature and discretized operational calculus. I. Numer. Math. 52: 129–145

    Article  MATH  MathSciNet  Google Scholar 

  14. Lubich C. (1988). Convolution quadrature and discretized operational calculus. II. Numer. Math. 52: 413–425

    Article  MATH  MathSciNet  Google Scholar 

  15. Lubich C. (2004). Convolution quadrature revisited. BIT 44: 503–514

    Article  MATH  MathSciNet  Google Scholar 

  16. Lubich Ch. and Ostermann A. (1993). Runge–Kutta methods for parabolic equations and convolution quadrature. Math. Comput. 60: 105–131

    Article  MATH  MathSciNet  Google Scholar 

  17. Palencia C. (1993). A stability result for sectorial operators in Banach spaces. SIAM J. Numer. Anal. 12: 1373–1384

    Article  MathSciNet  Google Scholar 

  18. Palencia C. (1995). Stability of rational multistep approximations of holomorphic semigroups. Math. Comput. 64: 591–599

    Article  MATH  MathSciNet  Google Scholar 

  19. Prüss J. (1993). Evolutionary Integral Equations and Applications. Birkhäuser, Basel

    MATH  Google Scholar 

  20. Spijker M.N. (1984). On the relation between stability and contractivity. BIT 24: 656–666

    Article  MATH  MathSciNet  Google Scholar 

  21. Sz.-Nagy  B. and Foias C. (1970). Harmonic Analysis of Operators in Hilbert Spaces. North-Holland, Amsterdam

    Google Scholar 

  22. Zisowsky A. and Ehrhardt M. (2006). Discrete transparent boundary conditions for parabolic systems. Math. Comput. Model. 43: 294–309

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Calvo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvo, M.P., Cuesta, E. & Palencia, C. Runge–Kutta convolution quadrature methods for well-posed equations with memory. Numer. Math. 107, 589–614 (2007). https://doi.org/10.1007/s00211-007-0107-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0107-9

Mathematics Subject Classification (2000)

Navigation