Skip to main content
Log in

Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we obtain convergence results for the fully discrete projection method for the numerical approximation of the incompressible Navier–Stokes equations using a finite element approximation for the space discretization. We consider two situations. In the first one, the analysis relies on the satisfaction of the inf-sup condition for the velocity-pressure finite element spaces. After that, we study a fully discrete fractional step method using a Poisson equation for the pressure. In this case the velocity-pressure interpolations do not need to accomplish the inf-sup condition and in fact we consider the case in which equal velocity-pressure interpolation is used. Optimal convergence results in time and space have been obtained in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badia, S.: Stabilized Pressure Segregation Methods and their Application to Fluid-Structure Interaction Problems. PhD Thesis, Escola Tècnica Superior d’Enginyers de Camins, Canals i Ports, Universitat Politècnica de Catalunya, Barcelona (2006)

  2. Blasco J. and Codina R. (2001). Space and time error estimates for a first order, pressure stabilized finite element method for the incompressible Navier–Stokes equations. Appl. Numer. Math. 38: 475–497

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenner S.C. and Scott L.R. (1994). The Mathematical Theory of Finite Element Methods. Springer, Heidelberg

    MATH  Google Scholar 

  4. Chorin A.J. (1967). The Numerical Solution of the Navier–Stokes Equations for an Incompressible Fluid. AEC Research and Development Report, NYO-1480-82. New York University, New York

    Google Scholar 

  5. Chorin A.J. (1968). Numerical solution of the Navier–Stokes equations. Math. Comput. 22: 745–762

    Article  MATH  MathSciNet  Google Scholar 

  6. Codina R. (2001). Pressure stability in fractional step finite element methods for incompressible flows. J. Comput. Phys. 170: 112–140

    Article  MATH  MathSciNet  Google Scholar 

  7. Codina R. and Badia S. (2006). On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems. Comput. Meth. Appl. Mech. Eng. 195: 2900–2918

    Article  MATH  MathSciNet  Google Scholar 

  8. Codina R. and Blasco J. (1997). A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput. Meth. Appl. Mech. Eng. 143: 373–391

    Article  MATH  MathSciNet  Google Scholar 

  9. Codina R. and Blasco J. (2000). Analysis of a pressure-stabilized finite element approximation of the stationary Navier–Stokes equations. Numer. Math. 87: 59–81

    Article  MATH  MathSciNet  Google Scholar 

  10. Constantin P. and Foias C. (1988). Navier–Stokes Equations. University of Chicago Press, Chicago and London

    MATH  Google Scholar 

  11. de Rham, G. (1973). Variétés Différentiables Formes, Courants, Formes Harmoniques. Hermann, Paris

    MATH  Google Scholar 

  12. Fernández M.A., Gerbeau J.F. and Grandmont C. (2007). A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Methods Eng. 69(4): 794–821

    Article  Google Scholar 

  13. Girault V. and Raviart P.A. (1986). Finite Element Methods for Navier–Stokes Equations. Springer, Heidelberg

    MATH  Google Scholar 

  14. Gresho P.M. (1990). On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part I: Theory. Int. J. Numer. Methods Fluids 11: 587–620

    Article  MATH  MathSciNet  Google Scholar 

  15. Guermond J.L. (1994). Remarques sur les méthodes de projection pour l’approximation des équations de Navier–Stokes. Numer. Math. 67: 465–473

    Article  MATH  MathSciNet  Google Scholar 

  16. Guermond J.L. and Quartapelle L. (1998). On stability and convergence of projection methods based on pressure Poisson equation. Int. J. Numer. Methods Fluids 26: 1039–1053

    Article  MATH  MathSciNet  Google Scholar 

  17. Guermond J.L. and Quartapelle L. (1998). On the approximation of the unsteady Navier–Stokes equations by finite element projection methods. Numer. Math. 80: 207–238

    Article  MATH  MathSciNet  Google Scholar 

  18. Heywood J.G. and Rannacher R. (1982). Finite element approximation of the nonstationary Navier–Stokes problem. I: Regularity of solutions and second-order error estimates for spatial disetization. SIAM J. Numer. Anal. 19: 275–311

    Article  MATH  MathSciNet  Google Scholar 

  19. Heywood J.G. and Rannacher R. (1990). Finite element approximation of the nonstationary Navier–Stokes problem. IV: Error analysis for second-order time disetization. SIAM J. Numer. Anal. 27: 353–384

    Article  MathSciNet  Google Scholar 

  20. Ladyzhenskaya O. (1969). The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York

    MATH  Google Scholar 

  21. Perot J.B. (1993). An analysis of the fractional step method. J. Comput. Phys. 108: 51–58

    Article  MATH  MathSciNet  Google Scholar 

  22. Prohl, A.: Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier–Stokes Equations. B.G. Teubner Stuttgart (1997)

  23. Rannacher, R.: On Chorin’s Projection Method for Incompressible Navier–Stokes Equations, Lecture Notes in Mathematics, vol. 1530, pp. 167–183. Springer, Berlin (1992)

  24. Shen J. (1992). On error estimates for some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62: 49–73

    Article  MathSciNet  Google Scholar 

  25. Shen J. (1994). Remarks on the pressure error estimates for the projection methods. Numer. Math. 67: 513–520

    Article  MATH  MathSciNet  Google Scholar 

  26. Temam R. (1969). Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionaires (I). Arch. Ration. Mech. Anal. 32: 135–153

    Article  MATH  MathSciNet  Google Scholar 

  27. Temam R. (1969). Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionaires (II). Arch. Ration. Mech. Anal. 33: 377–385

    Article  MATH  MathSciNet  Google Scholar 

  28. Temam R. (1984). Navier–Stokes Equations. North-Holland, Amsterdam

    MATH  Google Scholar 

  29. Temam R. (1991). Remark on the pressure boundary condition for the projection method. Theor. Comput. Fluid Dyn. 3: 181–184

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Badia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badia, S., Codina, R. Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition. Numer. Math. 107, 533–557 (2007). https://doi.org/10.1007/s00211-007-0099-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0099-5

Mathematics Subject Classification (2000)

Navigation