Skip to main content
Log in

A numerical algorithm for the nonlinear Kirchhoff string equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The initial boundary value problem is considered for the dynamic string equation . Its solution is found by means of an algorithm, the constituent parts of which are the Galerkin method, the modified Crank-Nicolson difference scheme used to perform approximation with respect to spatial and time variables, and also a Picard type iteration process for solving the system of nonlinear equations obtained by discretization. Errors of the three parts of the algorithm are estimated and, as a result, its total error estimate is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string equation. Trans. Amer. Math. Soc. 348, 305–329 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arosio, A., Spagnolo, S.: Global solution of the Cauchy problem for a nonlinear equation. In: Brezis, H., Lions, J.L. (eds.). Nonlinear PDE's and Their Applications. Collège de France Seminar, Pitman, Boston, 1984 pp. 1–26

  3. Attigui, F.: Contrôle et stabilisation de câbles non linéaires, Repport de stage scientifique. Laboratoire des Matériaux et des Structures du Génie Civil, Université Paris XIII, France, 1999 pp. 158

  4. Ball, J.M.: Saddle point analysis for an ordinary differential equation in a Banach space and an application to dynamic bucking of a beam. In: Dickey, R.W. (ed.) Nonlinear Elasticity, Proceedings. Academic Press, New York, 1973 pp. 93–160

  5. Bernstein, S.: Sur une classe d'équations fonctionnelles aux dérivées partielles. Izv. Akad. Nauk SSSR Ser. Mat. 4, 17–26 (1940)

    MATH  Google Scholar 

  6. Böhm, M., Toboada, M.: Global existence and regularity of solutions of the nonlinear string equation. IMA Preprint Series No. 1078, Institute for Math. and Its Appl., University of Minnesota (1992)

  7. Carrier, G.F.: On the nonlinear vibration of the elastic string. Quart. Appl Math. 3, 157–165 (1945)

    MATH  MathSciNet  Google Scholar 

  8. Chipot, M., Rodrigues, J.F.: On a class of nonlinear nonlocal elliptic problems. Model. Math. Anal. Numér. 26, 447–467 (1992)

    MATH  MathSciNet  Google Scholar 

  9. Christie, I., Sanz-Serna, J.M.: A Galerkin method for a nonlinear integro-differential wave system. Comput. Meth. Appl. Mech. Engrg. 44, 229–237 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dickey, R.W.: Infinite systems of nonlinear oscillation equations related to the string. Proc. Amer. Math. Soc. 23, 459–468 (1969)

    MATH  MathSciNet  Google Scholar 

  11. Dickey, R.W.: Infinite systems of nonlinear oscillation equations with linear damping. SIAM J. Appl. Math. 19, 208–214 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  12. D'Ancona, P., Spagnolo, S.: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 108, 247–262 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. D'Ancona, P., Spagnolo, S.: Global existence for the generalized Kirchhoff equation with small data. Arch. Rat. Mech. Anal. 124, 201–219 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. D'Ancona, P., Spagnolo, S.: Nonlinear perturbations of the Kirchhoff equation. Comm. Pure Appl. Math. XLVII, 1005–1029 (1994)

    Google Scholar 

  15. Kirchhoff, G.: Vorlesungen über Mechanik. Teubner, Leipzig, 1883

  16. Liu, I.S., Rincon, M.A.: Effect of moving boundaries on the vibrating elastic string. ELSGMLTM (APNUM): m2, v 1. 162, 1–14, Prn:10/07/2003

  17. Ma, T.F.: Existence results for a model of nonlinear beam on elastic bearings. Appl. Math. Lett. 13, 11–15 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ma, T.F., Miranda, E.S., De Souza Cortes, M.B.: A nonlinear differential equation involving of the argument. Archivum Mathematicum (BRNO) Tomus 40, 63–68 (2004)

    Google Scholar 

  19. Medeiros, L.A.: On a new class of nonlinear wave equations. J. Math. Anal. Appl. 69, 252–262 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Narasimha, R.: Nonlinear vibration of an elastic string. J. Sound Vibration 8, 134–146 (1968)

    Article  MATH  Google Scholar 

  21. Newman, W.: Nonlinear string and beam equations, Ph. D. Dissertation, University of Wisconsin-Madison, May, 1993

  22. Nishida, T.: A note on the nonlinear vibrations of the elastic string. Mem. Fac. Engrg. Kyoto Univ. 33, 329–341 (1971)

    MathSciNet  Google Scholar 

  23. Nishihara, K.: On a global solution of some quasilinear hyperbolic equation. Tokyo J. Math., v. 7, no. 2, 437–459 (1984)

    Google Scholar 

  24. Perla Menzala, G.: On classical solutions of a quasilinear hyperbolic equation. Nonlinear Anal. 3, 613–627 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  25. Peradze, J.: Discussions of ``A Galerkin method for a nonlinear integro-differential wave system'' by I. Christie and J.M. Sanz-Serna, Comput. Meth. Appl. Mech.Engrg. 44 (1984), 229–237'', Comput. Meth. Appl. Mech.Engrg. 191, 5249–5250 (2002)

    Google Scholar 

  26. Pohozaev, S.I.: On a class of quasilinear hyperbolic equation. Mat. Sb. 96, 152–165 (1975), translated in Math. USSR Sb. 25, 145–158 (1975)

    MathSciNet  Google Scholar 

  27. Rodriguez, P.H.R.: On local strong solutions of a nonlinear partial differential equation. Appl. Anal. 10, 93–104 (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jemal Peradze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peradze, J. A numerical algorithm for the nonlinear Kirchhoff string equation. Numer. Math. 102, 311–342 (2005). https://doi.org/10.1007/s00211-005-0642-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0642-1

Mathematics Subject Classification (1991)

Navigation