Skip to main content
Log in

Na+/K+-ATPase level and products of lipid peroxidation in live cells treated with therapeutic lithium for different periods in time (1, 7, and 28 days); studies of Jurkat and HEK293 cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Regulation of Na+/K+-ATPase in bipolar disorder and lithium therapy has been investigated for more than 40 years. Contradictory results in this area may be caused by the difference between acute and long-term Li effects on cell metabolism and variance in responsiveness of different cell types. We compared the time-course of Li action focusing on Na+/K+-ATPase and lipid peroxidation in two widely different cell models–Jurkat and HEK293. Na+/K+-ATPase expression level was determined in cells cultivated in the absence or presence of 1 mM Li for different time spans (1, 7, and 28 days) using [3H] ouabain binding and immunoblot assay of α-subunit. In parallel samples, the formation of malondialdehyde (MDA) was quantified by HPLC, and 4-hydroxy-2-nonenal (4-HNE) protein adducts were determined by immunoblot. Cultivation of Jurkat cells in 1 mM Li medium resulted in downregulation of Na+/K+-ATPase (decrease of [3H] ouabain-biding sites and intensity of immunoblot signals) in all Li-groups. In HEK293 cells, the decrease of Na+/K+-ATPase was observed after the acute, 1-day exposure only. The long-term treatment with Li resulted in Na+/K+-ATPase upregulation. MDA and 4-HNE modified proteins were decreased in Jurkat cells in all Li-groups. On the other hand, in HEK293 cells, MDA concentration was decreased after the acute, 1-day Li exposure only; the long-term cultivations, for 7 or 28 days, resulted in a significant increase of lipid peroxidation products. The Li-induced decrease of lipid peroxidation products was associated with the decrease of Na+/K+-ATPase level and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alda M (2015) Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry 20:661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander MP, Farag YM, Mittal BV, Rennke HG, Singh AK (2008) Lithium toxicity: a double-edged sword. Kidney Int 73:233–237

    Article  CAS  PubMed  Google Scholar 

  • Antia IJ, Dorkins CE, Wood AJ, Aronson JK (1992) Increase in Na+/K+ pump numbers in vivo in healthy volunteers taking oral lithium carbonate and further upregulation in response to lithium in vitro. Br J Clin Pharmacol 34:535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antia IJ, Smith CE, Wood AJ, Aronson JK (1995) The upregulation of Na+,K(+)-ATPase pump numbers in lymphocytes from the first-degree unaffected relatives of patients with manic depressive psychosis in response to in vitro lithium and sodium ethacrynate. J Affect Disord 34:33–39

    Article  CAS  PubMed  Google Scholar 

  • Avissar S, Schreiber G (2006) The involvement of G proteins and regulators of receptor-G protein coupling in the pathophysiology, diagnosis and treatment of mood disorders. Clin Chim Acta 366:37–47

    Article  CAS  PubMed  Google Scholar 

  • Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev 2014:360438

    Article  CAS  Google Scholar 

  • Baer L (1973) Pharmacology—lithium absorption, distribution, renal handling, and effects on body electrolytes (chapter 3). In: Gershon S, Shopsin B (eds) Lithium: its role in psychiatric research and treatment. Plenum Press, London, p 34

    Google Scholar 

  • Banerjee U, Dasgupta A, Rout JK, Singh OP (2012) Effects of lithium therapy on Na+-K+-ATPase activity and lipid peroxidation in bipolar disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 37:56–61

    Article  CAS  Google Scholar 

  • Birch NJ (1994) Lithium ions have limited intracellular access: implication for cell regulation and pharmacology. J Trace Microprobe Techn 12:1–16

    CAS  Google Scholar 

  • Can A, Schulze TG, Gould TD (2014) Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol Biochem Behav 123:3–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catalá A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157:1–11

    Article  PubMed  CAS  Google Scholar 

  • Cho YW (1995) Lithium-induced inhibition of Na-K ATPase and Ca ATPase activities in rat brain synaptosome. J Korean Med Sci 10:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chytilová A, Borchert GH, Mandíková-Alánová P, Hlaváčková M, Kopkan L, Khan MA, Imig JD, Kolář F, Neckář J (2015) Tumour necrosis factor-α contributes to improved cardiac ischaemic tolerance in rats adapted to chronic continuous hypoxia. Acta Physiol 214:97–108

    Article  CAS  Google Scholar 

  • de Vasconcellos AP, Zugno AI, Dos Santos AH, Nietto FB, Crema LM, Gonçalves M, Franzon R, de Souza Wyse AT, da Rocha ER, Dalmaz C (2005) Na+,K(+)-ATPase activity is reduced in hippocampus of rats submitted to an experimental model of depression: effect of chronic lithium treatment and possible involvement in learning deficits. Neurobiol Learn Mem 84:102–110

    Article  PubMed  CAS  Google Scholar 

  • El-Mallakh RS (1983a) The Na,K-ATPase hypothesis for manic-depression. I. General considerations. Med Hypotheses 12:253–268

    Article  CAS  PubMed  Google Scholar 

  • El-Mallakh RS (1983b) The Na,K-ATPase hypothesis for manic-depression. II. The mechanism of action of lithium. Med Hypotheses 12:269–282

    Article  CAS  PubMed  Google Scholar 

  • Fisar Z, Anders M, Tvrzicka E, Stankova B (2005) Effect of long-term administration of antidepressants on the lipid composition of brain plasma membranes. Gen Physiol Biophys 24:221–236

    CAS  PubMed  Google Scholar 

  • Gawlik-Kotelnicka O, Mielicki W, Rabe-Jabłońska J, Lazarek J, Strzelecki D (2016) Impact of lithium alone or in combination with haloperidol on oxidative stress parameters and cell viability in SH-SY5Y cell culture. Acta Neuropsychiatr 28:38–44

    Article  PubMed  Google Scholar 

  • Gioia L, Siddique A, Head SR, Salomon DR, Su AI (2018) A genome-wide survey of mutations in the Jurkat cell line. BMC Genomics 19:334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guerri C, Ribelles M, Grisolía S (1981) Effects of lithium, and lithium and alcohol administration on (Na + K)-ATPase. Biochem Pharmacol 30:25–30

    Article  CAS  PubMed  Google Scholar 

  • Gutman Y, Hochman S, Wald H (1973) The differential effect of Li + on microsomal ATPase in cortex, medulla and papilla of the rat kidney. Biochim Biophys Acta 298:284–290

    Article  CAS  PubMed  Google Scholar 

  • He B, Soderlund DM (2010) Human embryonic kidney (HEK293) cells express endogenous voltage-gated sodium currents and Na v 1.7 sodium channels. Neurosci Lett 469:268–272

    Article  CAS  PubMed  Google Scholar 

  • He B, Soderlund DM (2014) Functional expression of rat Nav1.6 voltage-gated sodium channels in HEK293 cells: modulation by the auxiliary β1 subunit. PLoS One 9:e85188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hesketh JE, Glen AI, Reading HW (1977a) Membrane ATPase activities in depressive illness. J Neurochem 28:1401–1402

    Article  CAS  PubMed  Google Scholar 

  • Hesketh JE, Kinloch N, Reading HW (1977b) The effects of lithium on ATPase activity in subcellular fractions from rat brain. J Neurochem 29:883–894

    Article  CAS  PubMed  Google Scholar 

  • Hillert M, Zimmermann M, Klein J (2012) Uptake of lithium into rat brain after acute and chronic administration. Neurosci Lett 521:62–66

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson E, Argüello-Miranda O, Chiu SW, Fazal Z, Kruczek J, Nunez-Corrales S, Pandit S, Pritchet L (2017) Towards a unified understanding of lithium action in basic biology and its significance for applied biology. J Membr Biol 250:587–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins RJ, Aronson JK, Brearley CJ (1991) Increases in Na/K pump numbers in isolated human lymphocytes exposed to lithium in vitro. Reversal by myo-inositol and by inhibitors of protein kinase C and the Na/H antiport. Biochim Biophys Acta 1092:138–144

    Article  CAS  PubMed  Google Scholar 

  • Johnston BB, Naylor GJ, Dick EG, Hopwood SE, Dick DA (1980) Prediction of clinical course of bipolar manic depressive illness treated with lithium. Psychol Med 10:329–334

    Article  CAS  PubMed  Google Scholar 

  • Joshi YB, Praticò D (2014) Lipid peroxidation in psychiatric illness: overview of clinical evidence. Oxidative Med Cell Longev 2014:828702

    Article  CAS  Google Scholar 

  • Khairova R, Pawar R, Salvadore G, Juruena MF, de Sousa RT, Soeiro-de-Souza MG, Salvador M, Zarate CA, Gattaz WF, Machado-Vieira R (2012) Effects of lithium on oxidative stress parameters in healthy subjects. Mol Med Rep 5:680–682

    CAS  PubMed  Google Scholar 

  • Khoubnasabjafari M, Ansarin K, Jouyban A (2015) Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. Bioimpacts 5:123–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Santos R, Gage FH, Marchetto MC (2017) Molecular mechanisms of bipolar disorder: progress made and future challenges. Front Cell Neurosci 11:30

    PubMed  PubMed Central  Google Scholar 

  • Komoroski RA, Pearce JM (2008) Estimating intracellular lithium in brain in vivo by localized 7Li magnetic resonance spectroscopy. Magn Reson Med 60:21–26

    Article  CAS  PubMed  Google Scholar 

  • Komoroski RA, Lindquist DM, Pearce JM (2013) Lithium compartmentation in brain by 7Li MRS: effect of total lithium concentration. NMR Biomed 26:1152–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai JS, Zhao C, Warsh JJ, Li PP (2006) Cytoprotection by lithium and valproate varies between cell types and cellular stresses. Eur J Pharmacol 539:18–26

    Article  CAS  PubMed  Google Scholar 

  • Laursen UH, Pihakaski-Maunsbach K, Kwon TH, Østergaard Jensen E, Nielsen S, Maunsbach AB (2004) Changes of rat kidney AQP2 and Na,K-ATPase mRNA expression in lithium-induced nephrogenic diabetes insipidus. Nephron Exp Nephrol 97: e1–16

  • Lazzara CA, Kim YH (2015) Potential application of lithium in Parkinson's and other neurodegenerative diseases. Front Neurosci 9:403

    Article  PubMed  PubMed Central  Google Scholar 

  • Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD, Edenberg HJ, Tsuang MT, Salomon DR, Nurnberger JI, Niculescu AB (2009) Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 14:156–174

    Article  CAS  PubMed  Google Scholar 

  • Le-Niculescu H, Levey DF, Ayalew M, Palmer L, Gavrin LM, Jain N, Winiger E, Bhosrekar S, Shankar G, Radel M, Bellanger E, Duckworth H, Olesek K, Vergo J, Schweitzer R, Yard M, Ballew A, Shekhar A, Sandusky GE, Schork NJ, Kurian SM, Salomon DR, Niculescu AB 3rd (2013) Discovery and validation of blood biomarkers for suicidality. Mol Psychiatry 18:1249–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, El-Mallakh RS (2004) Differential response of bipolar and normal control lymphoblastoid cell sodium pump to ethacrynic acid. J Affect Disord 80:11–17

    Article  CAS  PubMed  Google Scholar 

  • Lin YC, Boone M, Meuris L, Lemmens I, Van Roy N, Soete A, Reumers J, Moisse M, Plaisance S, Drmanac R, Chen J, Speleman F, Lambrechts D, Van de Peer Y, Tavernier J, Callewaert N (2014) Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun 5:4767

    Article  CAS  PubMed  Google Scholar 

  • Logan JG (1980) In vitro effects of lithium chloride on ATPases of rabbit cerebral synaptic membranes. Biochem Pharmacol 29:887–889

    Article  CAS  PubMed  Google Scholar 

  • Looney SW, el-Mallakh RS (1997) Meta-analysis of erythrocyte Na,K-ATPase activity in bipolar illness. Depress Anxiety 5:53–65

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Corcuera B, Gimenez C, Aragon C (1988) Change of synaptic membrane lipid composition and fluidity by chronic administration of lithium. Biochim Biophys Acta 939:467–475

    Article  CAS  PubMed  Google Scholar 

  • Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser V, da Silva VR, Kapczinski F, Portela LV, Souza DO, Salvador M, Gentil V (2007) Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett 421:33–36

    Article  CAS  PubMed  Google Scholar 

  • Malhi GS, Tanious M, Das P, Coulston CM, Berk M (2013) Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs 27:135–153

    Article  PubMed  Google Scholar 

  • McKnight RF, Adida M, Budge K, Stockton S, Goodwin GM, Geddes JR (2012) Lithium toxicity profile: a systematic review and meta-analysis. Lancet 379:721–728

    Article  CAS  PubMed  Google Scholar 

  • Mezni A, Khazri A, Khazri O, Limam F, Cosette P, Aouani E (2017) Neuroprotective activity of grape seed and skin extract against lithium exposure using proteomic research. Mol Neurobiol 54:2720–2730

    Article  CAS  PubMed  Google Scholar 

  • Morel P, Tallineau C, Pontcharraud R, Piriou A, Huguet F (1998) Effects of 4-hydroxynonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ ATPase in rat striatal synaptosomes. Neurochem Int 33:531–540

    Article  CAS  PubMed  Google Scholar 

  • Muller CP, Reichel M, Muhle C, Rhein C, Gulbins E, Kornhuber J (2015) Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta 1851:1052–1065

    Article  PubMed  CAS  Google Scholar 

  • Naylor GJ, Smith AH, Dick EG, Dick DA, McHarg AM, Chambers CA (1980) Erythrocyte membrane cation carrier in manic-depressive psychosis. Psychol Med 10:521–525

    Article  CAS  PubMed  Google Scholar 

  • Nciri R, Desmoulin F, Allagui MS, Murat JC, Feki AE, Vincent C, Croute F (2013) Neuroprotective effects of chronic exposure of SH-SY5Y to low lithium concentration involve glycolysis stimulation, extracellular pyruvate accumulation and resistance to oxidative stress. Int J Neuropsychopharmacol 16:365–376

    Article  CAS  PubMed  Google Scholar 

  • Onyango AN, Baba N (2010) New hypotheses on the pathways of formation of malondialdehyde and isofurans. Free Radic Biol Med 49:1594–1600

    Article  CAS  PubMed  Google Scholar 

  • Rapoport SI, Basselin M, Kim HW, Rao JS (2009) Bipolar disorder and mechanisms of action of mood stabilizers. Brain Res Rev 61:185–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riegel RE, Valvassori SS, Moretti M, Ferreira CL, Steckert AV, de Souza B, Dal-Pizzol F, Quevedo J (2010) Intracerebroventricular ouabain administration induces oxidative stress in the rat brain. Int J Dev Neurosci 28:233–237

    Article  CAS  PubMed  Google Scholar 

  • Rose AM, Mellett BJ, Valdes R, Kleinman JE, Herman MM, Li R, el-Mallakh RS (1998) Alpha 2 isoform of the Na,K-adenosine triphosphatase is reduced in temporal cortex of bipolar individuals. Biol Psychiatry 44:892–897

    Article  CAS  PubMed  Google Scholar 

  • Roubalova L, Vosahlikova M, Brejchova J, Sykora J, Rudajev V, Svoboda P (2015) High efficacy but low potency of delta-opioid receptor-G protein coupling in Brij-58-treated, low-density plasma membrane fragments. PLoS One 10:e0135664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roy S, Dasgupta A, Banerjee U, Chowdhury P, Mukhopadhyay A, Saha G, Singh O (2016) Role of membrane cholesterol and lipid peroxidation in regulating the Na. Indian J Psychiatry 58:317–325

    Article  PubMed  PubMed Central  Google Scholar 

  • Schreiber G, Avissar S (2007) Regulators of G-protein-coupled receptor-G-protein coupling: antidepressants mechanism of action. Expert Rev Neurother 7:75–84

    Article  CAS  PubMed  Google Scholar 

  • Shao L, Young LT, Wang JF (2005) Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 58:879–884

    Article  CAS  PubMed  Google Scholar 

  • Shaw G, Morse S, Ararat M, Graham FL (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 16:869–871

    Article  CAS  PubMed  Google Scholar 

  • Siems WG, Hapner SJ, van Kuijk FJ (1996) 4-hydroxynonenal inhibits Na(+)-K(+)-ATPase. Free Radic Biol Med 20:215–223

    Article  CAS  PubMed  Google Scholar 

  • Singh MM (1970) A unifying hypothesis on the biochemical basis of affective disorder. Psychiatr Q 44:706–724

    Article  CAS  PubMed  Google Scholar 

  • Skou JC, Esmann M (1992) The Na,K-ATPase. J Bioenerg Biomembr 24:249–261

    CAS  PubMed  Google Scholar 

  • Srikanthan K, Shapiro JI, Sodhi K (2016) The role of Na/K-ATPase signaling in oxidative stress related to obesity and cardiovascular disease. Molecules 21

  • Stout J, Hanak AS, Chevillard L, Djemaï B, Risède P, Giacomini E, Poupon J, Barrière DA, Bellivier F, Mégarbane B, Boumezbeur F (2017) Investigation of lithium distribution in the rat brain ex vivo using lithium-7 magnetic resonance spectroscopy and imaging at 17.2 T. NMR Biomed 30:e3770

    Article  CAS  Google Scholar 

  • Suwalsky M, Fierro P, Villena F, Sotomayor CP (2007) Effects of lithium on the human erythrocyte membrane and molecular models. Biophys Chem 129:36–42

    Article  CAS  PubMed  Google Scholar 

  • Svoboda P, Amler E, Teisinger J (1988) Different sensitivity of ATP + mg + Na (I) and pi + mg (II) dependent types of ouabain binding to phospholipase A2. J Membr Biol 104:211–221

    Article  CAS  PubMed  Google Scholar 

  • Thellier ME, Wissocq J-C, Ripoll C (1997) NCR and SIMS study of whether lithium ions have limited intracellular access. J Trace Microprobe Techn 15:93–99

    CAS  Google Scholar 

  • Tsikas D (2017) Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem 524:13–30

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Rothmann S, Schneider JY, Suchy MT, Trettin A, Modun D, Stuke N, Maassen N, Frölich JC (2016) Development, validation and biomedical applications of stable-isotope dilution GC-MS and GC-MS/MS techniques for circulating malondialdehyde (MDA) after pentafluorobenzyl bromide derivatization: MDA as a biomarker of oxidative stress and its relation to 15(S)-8-iso-prostaglandin F2α and nitric oxide (NO). J Chromatogr B Anal Technol Biomed Life Sci 1019:95–111

    Article  CAS  Google Scholar 

  • Vereninov IA, Yurinskaya VE, Model MA, Vereninov AA (2016) Unidirectional flux balance of monovalent ions in cells with Na/Na and Li/Na exchange: experimental and computational studies on lymphoid U937 cells. PLoS One 11:e0153284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viswanath B, Jose SP, Squassina A, Thirthalli J, Purushottam M, Mukherjee O, Vladimirov V, Patrinos GP, Del Zompo M, Jain S (2015) Cellular models to study bipolar disorder: a systematic review. J Affect Disord 184:36–50

    Article  PubMed  Google Scholar 

  • Vosahlikova M, Svoboda P (2011) The influence of monovalent cations on trimeric G protein G(i)1 alpha activity in HEK293 cells stably expressing DOR-G(i)1 alpha (Cys(351)-Ile(351)) fusion protein. Physiol Res 60:541–547

    Article  CAS  PubMed  Google Scholar 

  • Vosahlikova M, Svoboda P (2016) Lithium - therapeutic tool endowed with multiple beneficiary effects caused by multiple mechanisms. Acta Neurobiol Exp 76:1–19

    Google Scholar 

  • Vosahlikova M, Jurkiewicz P, Roubalova L, Hof M, Svoboda P (2014) High- and low-affinity sites for sodium in delta-OR-G(i)1 alpha (Cys(351)-Ile(351)) fusion protein stably expressed in HEK293 cells; functional significance and correlation with biophysical state of plasma membrane. Naunyn Schmiedeberg's Arch Pharmacol 387:487–502

    Article  CAS  Google Scholar 

  • Vosahlikova M, Ujcikova H, Chernyayskiy O, Brejchova J, Roubalova L, Alda M, Svoboda P (2017) Effect of therapeutic concentration of lithium on live HEK293 cells; increase of Na+/K+-ATPase, change of overall protein composition and alteration of surface layer of plasma membrane. Biochim Biophys Acta-Gen Subj 1861:1099–1112

    Article  CAS  PubMed  Google Scholar 

  • Vosahlikova M, Ujcikova H, Hlouskova M, Musil S, Roubalova L, Alda M, Svoboda P (2018) Induction of oxidative stress by long-term treatment of live HEK293 cells with therapeutic concentration of lithium is associated with down-regulation of δ-opioid receptor amount and function. Biochem Pharmacol 154:452–463

    Article  CAS  PubMed  Google Scholar 

  • Wood AJ, Elphick M, Grahame-Smith DG (1989a) Effect of lithium and of other drugs used in the treatment of manic illness on the cation-transporting properties of Na+,K+-ATPase in mouse brain synaptosomes. J Neurochem 52:1042–1049

    Article  CAS  PubMed  Google Scholar 

  • Wood AJ, Viswalingam A, Glue P, Aronson JK, Grahame-Smith DG (1989b) Measurement of cation transport in vivo in healthy volunteers after the oral administration of lithium carbonate. Clin Sci (Lond) 76:397–402

    Article  CAS  Google Scholar 

  • Young W (2009) Review of lithium effects on brain and blood. Cell Transplant 18:951–975

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Czech Science Foundation GA CR (GA17-07070S), from the institutional project of the Institute of Physiology of the Czech Academy of Sciences (RVO:67985823) and from the institutional research plan of the Institute of Analytical Chemistry of the Czech Academy of Sciences (RVO:68081715).

Author information

Authors and Affiliations

Authors

Contributions

PS and MV conceived and designed research. MV, LR, HU, MH, and SM conducted experiments. MV, LR and PS analyzed data. MV, PS, and MA wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Miroslava Vosahlikova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vosahlikova, M., Roubalova, L., Ujcikova, H. et al. Na+/K+-ATPase level and products of lipid peroxidation in live cells treated with therapeutic lithium for different periods in time (1, 7, and 28 days); studies of Jurkat and HEK293 cells. Naunyn-Schmiedeberg's Arch Pharmacol 392, 785–799 (2019). https://doi.org/10.1007/s00210-019-01631-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01631-4

Keywords

Navigation