Skip to main content

Advertisement

Log in

Antitumor activity of silver nanoparticles in Ehrlich carcinoma-bearing mice

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) have a wide range of industrial and biomedical applications. The aim of the present study was to determine the cytotoxic and genotoxic effects of AgNPs on Ehrlich carcinoma-bearing mice. AgNPs were characterized by ultraviolet-visible absorption spectroscopy, dynamic light scattering, and transmission electron microscopy (TEM). Furthermore, the cytotoxicity and genotoxicity of AgNPs were evaluated using a series of assays: superoxide dismutase (SOD) enzyme activity, malondialdehyde (MDA) levels, DNA damage (comet assay), and histopathological examination of tissues and tumor size in Ehrlich carcinoma-bearing mice. Treatment of Ehrlich carcinoma-bearing mice with various concentrations of AgNPs (6, 24, and 48 mg/kg) injected intra peritoneal (IP) and intra tumor (IT) revealed that AgNPs significantly elevated the levels (0.5- to 5-fold) of MDA and reduced the activity (32–64%) of SOD. Furthermore, AgNPs caused a 2- to 3-fold increase in comet parameters such as percent tail DNA. Additionally, AgNPs inhibit the promotion of Ehrlich carcinoma by masses of necrotic and fragmented tumor cells. Consequently, the volume of tumor reduced by about 31–95% compared to control one. The results indicate that AgNPs possess cytotoxic and genotoxic effects against Ehrlich tumor and confirm the antitumor properties of AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al Gurabi MA, Ali D, Alkahtani S, Alarifi S (2015) In vivo DNA damaging and apoptotic potential of silver nanoparticles in Swiss albino mice. OncoTargets Ther 8:295

    Google Scholar 

  • Avalos A, Haza AI, Mateo D, Morales P (2014) Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. Appl Toxicol 34:413–423

    Article  CAS  Google Scholar 

  • Awara WM, El-Nabi SH, El-Gohary M (1998) Assessment of vinyl chloride-induced DNA damage in lymphocytes of plastic industry workers using a single-cell gel electrophoresis technique. Toxicology 128(1):9–16

    Article  CAS  Google Scholar 

  • Awasthi KK, Awasthi A, Kumar N, Roy P, Awasthi K, John PJ (2013) Silver nanoparticle induced cytotoxicity, oxidative stress, and DNA damage in CHO cells. J Nanopart Res 15:1898

    Article  Google Scholar 

  • Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875–1882

    Article  CAS  Google Scholar 

  • Bergfeld SA, Blavier L, De Clerck YA (2014) Bone marrow-derived mesenchymal stromal cells promote survival and drug resistance in tumor cells. Mol Cancer Ther 13(4):962–975. https://doi.org/10.1158/15357163.MCT-13-0400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  CAS  Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  CAS  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214

    Article  CAS  Google Scholar 

  • Ebabe Elle R, Gaillet S, Vidé J, Romain C, Lauret C, Rugani N, Cristol JP, Rouanet JM (2013) Dietary exposure to silver nanoparticles in Sprague-Dawley rats: effects on oxidative stress and inflammation. Food Chem Toxicol 60:297–301

    Article  CAS  Google Scholar 

  • El Bialy BE, Hamouda RA, Khalifa KS, Hamza HA (2017) Cytotoxic effect of biosynthesized silver nanoparticles on Ehrlich ascites tumor cells in mice. Int J Pharmacol. https://doi.org/10.3923/ijp.2017.134.144

    Article  Google Scholar 

  • El Mahdy MM, Salah Eldinb TA, Aly HS, Mohammed FF, Shaalan MI (2014) Evaluation of hepatotoxic and genotoxic potential of silvernanoparticles in albino rats. Exp Toxicol Pathol 67:21–29

    Article  Google Scholar 

  • El-Bialy NS, Rageh MM (2013) Extremely low-frequency magnetic field enhances the therapeutic efficacy of low-dose cisplatin in the treatment of Ehrlich carcinoma. BioMed Res Int 2013:189352–189357

    PubMed  PubMed Central  Google Scholar 

  • El-Sonbaty SM (2013) Fungus-mediated synthesis of silver nanoparticles and evaluation of antitumor activity. Cancer Nanotechnol 4(4–5):73–79

    Article  CAS  Google Scholar 

  • Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190(2):156e62

    Article  Google Scholar 

  • Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and ag release. Part Fibre Toxicol 11:11

    Article  Google Scholar 

  • Gottesman MM, Fojo T, Bates SE (2002) Multi drug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58

    Article  CAS  Google Scholar 

  • Guo D, Zhu L, Huang Z, Zhou H, Ge Y, Mad W et al (2013) Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 34(32):7884–7894

    Article  CAS  Google Scholar 

  • Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH (2013a) Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int 2013:535796

    Article  Google Scholar 

  • Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S (2013b) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int. J Nanomedicine 8:4399–4413

    PubMed  PubMed Central  Google Scholar 

  • Han JW, Gurunathan S, Jeong JK, Choi YJ, Kwon DN, Park JK, Kim JH (2014) Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line. Nanoscale Res Lett 9(1):459

    Article  Google Scholar 

  • Hill GW, Morest DK, Parham K (2008) Cisplatin-induced ototoxicity: effect of in tatympanic dexamethasone injections. Otol. Neurotol 29:1005–1011

    Article  Google Scholar 

  • Jeyaraj M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R, Kapildev G, Manickavasagam M, Thajuddin N, Premkumar K, Ganapathi A (2013) Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B: Biointerfaces 106:86–92

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Banumathi E, Pandian SBRK, Deepak V, Muniyandi J, Eom SH, Gurunathan S (2009) Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces 73:51–57

    Article  CAS  Google Scholar 

  • Kim S, Ryu DY (2013) Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33:78–89

    Article  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C, Kim Y, Lee Y, Jeong DH, Cho M (2007) Antimicrobial effects of silver nanoparticles, Nanomed. Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  • Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Antifungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals 22:235–242

    Article  CAS  Google Scholar 

  • Kwon JT, Tehrani AM, Hwang SK, Kim JE, Shin JY, Yu KN, Chang SH, Kim DS, Kwon YT, Choi IJ, Cheong YH, Kim JS, Cho MH (2012) Acute pulmonary toxicity and body distribution of inhaled metallic silver nanoparticles. Toxicol Res 28(1):25–31

    Article  CAS  Google Scholar 

  • Lin CX, Yang SY, Gu JL, Meng J, Xu HY, Cao JM (2017) The acute toxic effects of silvernanoparticles on myocardial transmembrane potential, INa and IK1 channels and heart rhythm in mice. Nanotoxicology 11(6):827–837. https://doi.org/10.1080/17435390.2017.1367047

    Article  CAS  PubMed  Google Scholar 

  • Liu HL, Yang HL, Lin BC, Zhang W, Tian L, Zhang HS, Xi ZG (2015) Toxic effect comparison of three typical sterilization nanoparticles on oxidative stress and immune inflammation response in rats. Toxicol Res 4(2):486–493

    Article  CAS  Google Scholar 

  • Mansour HH, Eid M, El-Arnaouty MB (2018) Effect of silver nanoparticles synthesized by gamma radiation on the cytotoxicity of doxorubicin in human cancer cell lines and experimental animals. Human Exp Toxicol 37(1):38–50

    Article  CAS  Google Scholar 

  • Mata R, Nakkala JR, Chandra VK, Raja K, Sadras SR (2018) In vivo bio-distribution, clearance and toxicity assessment of biogenic silver and gold nanoparticles synthesized from Abutilon indicum in Wistar rats. J Trace Elem Med Biol 48:157–165. https://doi.org/10.1016/j.jtemb.2018.03.015

    Article  CAS  PubMed  Google Scholar 

  • Moller P (2006) The alkaline comet assay: towards validation in biomonitoring of DNA damaging exposures. Basic Clin Pharmacol Toxicol 98:336–345

    Article  Google Scholar 

  • Moller P, Knudsen LE, Loft S, Wallin H (2000) The comet assay as a rapid test in biomonitoring occupational exposure to DNA damaging agents and effect of confounding factors. Cancer Epidemiol Biomark Prev 9(10):1005–1015

    CAS  Google Scholar 

  • Narchin F, Larijani K, Rustayan A, Nejad Ebrahimi S, Tafvizi F (2018) Phytochemical synthesis of silver nanoparticles by two techniques Using Saturaja rechengri Jamzad extract: identifying and comparing in Vitro anti-proliferative activities. Adv Pharm Bull 8:235–244

    Article  Google Scholar 

  • Ning S, Macleod K, Abra RM, Huang AH, Hahn GM (1994) Hyperthermia induces doxorubicin release from long-circulating liposomes and enhances their anti-tumor efficacy. Int J Radiat Oncol Biol Phys 29(4):827–834

    Article  CAS  Google Scholar 

  • Nishikimi M, Appaji Rao N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854

    Article  CAS  Google Scholar 

  • Pacioni NL, Borsarelli CD, Rey V, Veglia AV. Synthetic routes for the preparation of silver nanoparticles. In Silver Nanoparticle Applications 2015 (pp. 13–46). Springer, Cham.

    Chapter  Google Scholar 

  • Park S, Lee YK, Jung M, Kim KH, Chung N, Ahn EK, Lim Y, Lee KH (2007) Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal Toxicol 19(Suppl 1):59–65

    Article  CAS  Google Scholar 

  • Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, Van LH, De Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–9817

    Article  CAS  Google Scholar 

  • Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY et al (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92e100

    Article  Google Scholar 

  • Prasannaraj G, Sahi SV, Ravikumar S, Venkatachalam P (2016) Enhanced cytotoxicity of biomolecules loaded metallic silver nanoparticles against human liver (HepG2) and prostate (PC3) cancer cell lines. J Nanosci Nanotechnol 16(5):4948–4959

    Article  CAS  Google Scholar 

  • Rageh M. M., El-Gebaly R. H., (2018) Melanin nanoparticles: antioxidant activities and effects on γ-ray-induced DNA damage in the mouse. Mutat Res Gen Tox En 15–22

    Article  CAS  Google Scholar 

  • Ratyakshi CRP (2009 Jan 1) Colloidal synthesis of silver nano particles. Asian J Chem 21(10):S113–S116

    CAS  Google Scholar 

  • Scoville DK, Botta D, Galdanes K, Schmuck SC, White CC, Stapleton PL, Bammler TK, MacDonald JW, Altemeier WA, Hernandez M, Kleeberger SR, Chen LC, Gordon T, Kavanagh TJ (2017) Genetic determinants of susceptibility to silver nanoparticle-induced acute lung inflammation in mice. FASEB J 31(10):4600–4611. https://doi.org/10.1096/fj.201700187R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  Google Scholar 

  • Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879

    Article  CAS  Google Scholar 

  • Swanner J, Mims J, Carroll DL, Akman SA, Furdui CM, Torti SV, Singh RN (2015) Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells. Int J Nanomedicine (10):3937–3953

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed NBM 6(2):257–262

    Article  CAS  Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagenesis 35(3):206–221

    Article  CAS  Google Scholar 

  • Tiwari DK, Jin T, Behari J (2011) Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods 21(1):13–24

    Article  CAS  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  • Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  Google Scholar 

  • Wen H., Dan M., Yang Y., Lyu J., Shao A., Cheng X.,Chen L., Xu L.,(2017) Acute toxicity and genotoxicity of silver nanoparticle in rats, PLOS ONE

  • Yuan YG, Peng QL, Gurunathan S (2017) Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomedicine 12:6487–6502. https://doi.org/10.2147/IJN.S135482

    Article  PubMed  PubMed Central  Google Scholar 

  • Zapór L (2016) Effects of silver nanoparticles of different sizes on cytotoxicity and oxygen metabolism disorders in both reproductive and respiratory system cells. Arch Environ Prot 42(4):32–47

    Article  Google Scholar 

  • Zhang T, Wang L, Chen Q, Chen C (2014) Cytotoxic potential of silver nanoparticles. Yonsei Med J 55(2):283–291

    Article  CAS  Google Scholar 

  • Zhou G, Wang W (2012) Synthesis of silver nanoparticles and their antiproliferation against human lung cancer cells in vitro. Orient J Chem 28(2):651–655

    Article  CAS  Google Scholar 

  • Zielinska E, Zauszkiewicz-Pawlak A, Wojcik M, Inkielewicz-Stepniak I (2018) Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget 9(4):4675–4697

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M R and R G conceived and designed research, and analyzed data. MA conducted experiments and contributed new reagents or analytical tools. M R wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Monira M. Rageh.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rageh, M.M., El-Gebaly, R.H. & Afifi, M.M. Antitumor activity of silver nanoparticles in Ehrlich carcinoma-bearing mice. Naunyn-Schmiedeberg's Arch Pharmacol 391, 1421–1430 (2018). https://doi.org/10.1007/s00210-018-1558-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-018-1558-5

Keywords

Navigation