Skip to main content
Log in

Pharmacokinetic-pharmacodynamic modeling of the antihypertensive interaction between azilsartan medoxomil and chlorthalidone in spontaneously hypertensive rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

A pharmacokinetic-pharmacodynamic (PK-PD) model was developed to describe the time course of blood pressure following oral administration of azilsartan medoxomil (AZM) and/or chlorthalidone (CLT) in spontaneously hypertensive (SH) rats. The drug concentration and pharmacological effects, including systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and tail-cuff manometry, respectively. Sequential PK-PD analysis was performed, wherein the plasma concentration-time data was modeled by one compartmental analysis. Subsequently PD parameters were calculated to describe the time-concentration-response relationship using indirect response (IDR) PK-PD model. The combination of AZ and CLT had greater BP lowering effect compared to AZ or CLT alone, despite of no pharmacokinetic interaction between two drugs. These findings suggest synergistic antihypertensive pharmacodynamic interaction between AZ and CLT noncompetitively, which was simulated by inhibitory function of AZ and stimulatory function of CLT after concomitant administration of the two drugs. The present model was able to capture the turnover of blood pressure adequately at different time points at two different dose levels. The current PK-PD model was successfully utilized in the simulation of PD effect at a dose combination of 0.5 and 2.5 mg/kg for AZ and CLT, respectively. The developed preclinical PK-PD model may provide guidance in the optimization of dose ratio of individual drugs in the combined pharmacotherapy of AZ and CLT at clinical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adolph EF (1949) Quantitative relations in the physiological constitutions of mammals. Science 109:579–585

    Article  CAS  PubMed  Google Scholar 

  • Anger GJ, Piquette-Miller M (2008) Translational pharmacology: harnessing increased specialization of research within the basic biological sciences. Clinical Pharmacology & Therapeutics 83:797–801

    Article  CAS  Google Scholar 

  • Bakris GL, Sica D, White WB, Cushman WC, Weber MA, Handley A, Song E, Kupfer S (2012) Antihypertensive efficacy of hydrochlorothiazide vs chlorthalidone combined with azilsartan medoxomil. Am J Med 125:1229.e1221–1229.e1210

    Article  Google Scholar 

  • Barrios V, Escobar C (2013) Azilsartan medoxomil in the treatment of hypertension: the definitive angiotensin receptor blocker? Expert Opin Pharmacother 14:2249–2261

    Article  CAS  PubMed  Google Scholar 

  • Bertera FM, Mayer MA, Opezzo JA, Taira CA, Bramuglia GF, Höcht C (2007) Pharmacokinetic–pharmacodynamic modeling of diltiazem in spontaneously hypertensive rats: a microdialysis study. J Pharmacol Toxicol Methods 56:290–299

    Article  CAS  PubMed  Google Scholar 

  • Davies D, Wilson G (1975) Diuretics: mechanism of action and clinical application. Drugs 9:178–226

    Article  CAS  PubMed  Google Scholar 

  • Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21:457–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Caterina AR, Harper AR, Cuculi F (2012) Critical evaluation of the efficacy and tolerability of azilsartan. Vasc Health Risk Manag 8:299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinh DT, Frauman AG, Johnston CI, Fabiani ME (2001) Angiotensin receptors: distribution, signalling and function. Clin Sci 100:481–492

    Article  CAS  PubMed  Google Scholar 

  • Dorsch MP, Gillespie BW, Erickson SR, Bleske BE, Weder AB (2011) Chlorthalidone reduces cardiovascular events compared with hydrochlorothiazide a retrospective cohort analysis. Hypertension 57:689–694

    Article  CAS  PubMed  Google Scholar 

  • Earp J, Krzyzanski W, Chakraborty A, Zamacona MK, Jusko WJ (2004) Assessment of drug interactions relevant to pharmacodynamic indirect response models. J Pharmacokinet Pharmacodyn 31:345–380

    Article  CAS  PubMed  Google Scholar 

  • Gabrielsson J, Weiner D (2001) Pharmacokinetic and pharmacodynamic data analysis: concepts and applications. CRC Press

  • Gabrielsson J, Weiner D (2007) Pharmacokinetic and pharmacodynamic data analysis: concepts and applications: concepts and application. Swedish pharmaceutical society, Swedish Pharmaceutical Press, Stockholm

    Google Scholar 

  • Gorostidi M, de la Sierra A (2013) Combination therapy in hypertension. Adv Ther 30:320–336

    Article  CAS  PubMed  Google Scholar 

  • Gradman AH, Basile JN, Carter BL, Bakris GL (2010) Combination therapy in hypertension. Journal of the American Society of Hypertension 4:42–50

    Article  CAS  PubMed  Google Scholar 

  • Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47:331–385

    CAS  PubMed  Google Scholar 

  • Hao K, Chen Y, Zhao X, Liu X (2014) Pharmacokinetic-pharmacodynamic model of the antihypertensive interaction between telmisartan and hydrochlorothiazide in spontaneously hypertensive rats. J Pharm Pharmacol 66:1112–1121

    CAS  PubMed  Google Scholar 

  • Hao K, Yu D (2007) Pharmacokinetic-pharmacodynamic modeling of telmisartan using an indirect response model in spontaneously hypertensive rats1. Acta Pharmacol Sin 28:738–743

    Article  CAS  PubMed  Google Scholar 

  • Hocht C, Mayer MA, Opezzo JA, Bertera FM, Taira CA (2008) Pharmacokinetic-pharmacodynamic modeling of antihypertensive drugs: from basic research to clinical practice. Curr Hypertens Rev 4:289–302

    Article  CAS  Google Scholar 

  • Huang X-H, Qiu F-R, Xie H-T, Li J (2005a) Pharmacokinetic and pharmacodynamic interaction between irbesartan and hydrochlorothiazide in renal hypertensive dogs. J Cardiovasc Pharmacol 46:863–869

    Article  CAS  PubMed  Google Scholar 

  • Huang X-H, Qiu F-R, Xie H-T, Li J (2005b) Pharmacokinetic and pharmacodynamic of irbesartan in renal hypertensive dogs under non-steady-state and steady-state conditions. Eur J Drug Metab Pharmacokinet 30:121–126

    Article  CAS  PubMed  Google Scholar 

  • Jin C, O'Boyle S, Kleven DT, Pollock JS, Pollock DM, White JJ (2014) Antihypertensive and anti-inflammatory actions of combined azilsartan and chlorthalidone in Dahl salt-sensitive rats on a high-fat, high-salt diet. Clin Exp Pharmacol Physiol 41:579–588

    Article  CAS  PubMed  Google Scholar 

  • Jusko WJ, Ko HC (1994) Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin Pharmacol Ther 56:406–419

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi N, Ebihara T, Takeuchi T, Morohashi A, Yamasaki H, Tagawa Y, Takahashi J, Kondo T, Asahi S (2013) Absorption of TAK-491, a new angiotensin II receptor antagonist, in animals. Xenobiotica 43:182–192

    Article  CAS  PubMed  Google Scholar 

  • Komukai K, Mochizuki S, Yoshimura M (2010) Gender and the renin–angiotensin–aldosterone system. Fundamental & clinical pharmacology 24:687–698

    Article  CAS  Google Scholar 

  • Krzyzanski W, Jusko WJ (1997) Mathematical formalism for the properties of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 25:107–123

    Article  CAS  PubMed  Google Scholar 

  • Kurtz TW, Kajiya T (2012) Differential pharmacology and benefit/risk of azilsartan compared to other sartans. Vasc Health Risk Manag 8:133–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusumoto K, Igata H, Ojima M, Tsuboi A, Imanishi M, Yamaguchi F, Sakamoto H, Kuroita T, Kawaguchi N, Nishigaki N (2011) Antihypertensive, insulin-sensitising and renoprotective effects of a novel, potent and long-acting angiotensin II type 1 receptor blocker, azilsartan medoxomil, in rat and dog models. Eur J Pharmacol 669:84–93

    Article  CAS  PubMed  Google Scholar 

  • Laragh JH, Sealey JE (2003) Relevance of the plasma renin hormonal control system that regulates blood pressure and sodium balance for correctly treating hypertension and for evaluating ALLHAT. Am J Hypertens 16:407–415

    Article  CAS  PubMed  Google Scholar 

  • Lerman LO, Chade AR, Sica V, Napoli C (2005) Animal models of hypertension: an overview. J Lab Clin Med 146:160–173

    Article  CAS  PubMed  Google Scholar 

  • Lötsch J, Geisslinger G (2010) Bedside-to-bench pharmacology: a complementary concept to translational pharmacology. Clin Pharmacol Ther 87:647

    Article  PubMed  Google Scholar 

  • Mager D, Jusko W (2008) Development of translational pharmacokinetic–pharmacodynamic models. Clinical Pharmacology & Therapeutics 83:909–912

    Article  CAS  Google Scholar 

  • Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31:510–518

    Article  CAS  PubMed  Google Scholar 

  • Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S (2007) 2007 ESH-ESC practice guidelines for the management of arterial hypertension: ESH-ESC task force on the management of arterial hypertension. J Hypertens 25:1751–1762

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Huang L, Yang B (2012) Organic amine salts of azilsartan, preparation method and use thereof. Google Patents

  • Pérez-Urizar J, Granados-Soto V, Flores-Murrieta FJ, Castañeda-Hernández G (2000) Pharmacokinetic-pharmacodynamic modeling: why? Arch Med Res 31:539–545

    Article  PubMed  Google Scholar 

  • Pierini D, Anderson KV (2013) Azilsartan medoxomil/chlorthalidone: a new fixed-dose combination antihypertensive. Ann Pharmacother 47:694–703

    Article  PubMed  Google Scholar 

  • Ramakrishna R, Kumar Puttrevu S, Bhateria M, Bala V, Sharma VL, Bhatta RS (2015) Simultaneous determination of azilsartan and chlorthalidone in rat and human plasma by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B 990:185–197

    Article  CAS  Google Scholar 

  • Sharma A, Jusko WJ (1998) Characteristics of indirect pharmacodynamic models and applications to clinical drug responses. Br J Clin Pharmacol 45:229–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sica D, Bakris GL, White WB, Weber MA, Cushman WC, Huang P, Roberts A, Kupfer S (2012) Blood pressure–lowering efficacy of the fixed-dose combination of azilsartan medoxomil and chlorthalidone: a factorial study. The Journal of Clinical Hypertension 14:284–292

    Article  CAS  PubMed  Google Scholar 

  • Toutain P-L (2002) Pharmacokinetic/pharmacodynamic integration in drug development and dosage-regimen optimization for veterinary medicine. Aaps Pharmsci 4:160–188

    Article  PubMed Central  Google Scholar 

  • Tsai MC, Wu J, Kupfer S, Vakilynejad M (2015) Population pharmacokinetics and exposure-response of a fixed-dose combination of azilsartan medoxomil and chlorthalidone in patients with stage 2 hypertension. J Clin Pharmacol

  • US-FDA (2005) Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. In: Administration USDoHaHSFaD (ed) Center for Drug Evaluation and Research (CDER)

  • Yamori Y, Okamoto K (1973) Spontaneous hypertension in rats versus essential hypertension in man. Singap Med J 14:393–394

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, CDRI, for providing facilities and infrastructure for the study. Authors SKP, RR, MB, and MJ are also thankful to the Council of Scientific and Industrial Research (CSIR) for providing fellowship and CSIR research grant through THUNDER project (BSC-1012). CSIR-CDRI communication number for this manuscript is: 9418.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabi Sankar Bhatta.

Ethics declarations

All the experimental procedures were approved by the Institutional Animal Ethics Committee (IAEC) of CSIR-CDRI [IAEC approval no. IAEC/2011/21/Renew-4 (102/15)]. All the animal experiments were performed according to IAEC approved guidelines and regulations.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Santosh Kumar Puttrevu, Rachumallu Ramakrishna, and Manisha Bhateria contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar Puttrevu, S., Ramakrishna, R., Bhateria, M. et al. Pharmacokinetic-pharmacodynamic modeling of the antihypertensive interaction between azilsartan medoxomil and chlorthalidone in spontaneously hypertensive rats. Naunyn-Schmiedeberg's Arch Pharmacol 390, 457–470 (2017). https://doi.org/10.1007/s00210-017-1339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-017-1339-6

Keywords

Navigation