Skip to main content

Advertisement

Log in

Verapamil reverses cardiac iron overload in streptozocin-induced diabetic rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Accumulating evidence shows that iron overload is a new risk factor for diabetes mellitus. l-type Ca2+ channel (LTCC) has been identified as an important mediator for ferrous iron uptake into cardiomyocytes. In this study, we aimed to examine the effects of verapamil, the LTCC blocker, on myocardial iron metabolism in diabetic rats. Diabetes was induced by intraperitoneal injection of streptozocin after intragastric administration of fat emulsion, and then treated by verapamil (5 mg · kg−1 · day−1) for 1 week. The results showed that verapamil did not alter the blood glucose level of diabetic rats. However, elevated levels of superoxide dismutase, malonaldehyde, and serum ferritin in diabetic rats were decreased significantly by verapamil treatment. Moreover, serum, myocardial, and urine iron were elevated remarkably along with a decrease of hepatic iron in diabetic rats. After verapamil administration, serum and myocardial iron in diabetic rats were reduced significantly but urine and hepatic iron were increased. Furthermore, confocal microscopy demonstrated that intracellular-free iron concentration was elevated dramatically in cardiomyocytes of diabetic rats, which was markedly attenuated after verapamil treatment. In summary, our data demonstrated that verapamil prevented myocardial iron overload by inhibiting intracellular iron accumulation in diabetic cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Castoldi M, Vujic Spasic M, Altamura S, Elmén J, Lindow M, Kiss J, Stolte J, Sparla R, D’Alessandro LA, Klingmüller U, Fleming RE, Longerich T, Gröne HJ, Benes V, Kauppinen S, Hentze MW, Muckenthaler MU (2011) The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J Clin Invest 121:1386–1396

    Article  PubMed  CAS  Google Scholar 

  • Cekic O, Bardak Y (1998) Lenticular calcium, magnesium, and iron levels in diabetic rats and verapamil effect. Ophthalmic Res 30:107–112

    Article  PubMed  CAS  Google Scholar 

  • Cooksey RC, Jones D, Gabrielsen S, Huang J, Simcox JA, Luo B, Soesanto Y, Rienhoff H, Abel ED, McClain DA (2010) Dietary iron restriction or iron chelation protects from diabetes and loss of beta-cell function in the obese (ob/ob lep−/−) mouse. Am J Physiol Endocrinol Metab 298:E1236–E1243

    Article  PubMed  CAS  Google Scholar 

  • Das SK, Oudit GY (2012) Voltage-gated Ca2+ channels as key mediators of iron-transport and iron-overload cardiomyopathy: l-type vs. T-type Ca2+ channels. Eur J Haematol 88:476–477

    Article  PubMed  CAS  Google Scholar 

  • Day SM, Duquaine D, Mundada LV, Menon RG, Khan BV, Rajagopalan S, Fay WP (2003) Chronic iron administration increases vascular oxidative stress and accelerates arterial thrombosis. Circulation 107:2601–2606

    PubMed  CAS  Google Scholar 

  • Huang J, Jones D, Luo B, Sanderson M, Soto J, Abel ED, Cooksey RC, McClain DA (2011) Iron overload and diabetes risk: a shift from glucose to fatty acid oxidation and increased hepatic glucose production in a mouse model of hereditary hemochromatosis. Diabetes 60:80–87

    Article  PubMed  CAS  Google Scholar 

  • Kell DB (2009) Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2:2

    Article  PubMed  Google Scholar 

  • Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J (2008) Body iron metabolism and pathophysiology of iron overload. Int J Hematol 88:7–15

    Article  PubMed  CAS  Google Scholar 

  • Kumfu S, Chattipakorn S, Srichairatanakool S, Settakorn J, Fucharoen S, Chattipakorn N (2011) T-type calcium channel as a portal of iron uptake into cardiomyocytes of beta-thalassemic mice. Eur J Haematol 86:156–166

    Article  PubMed  CAS  Google Scholar 

  • Kumfu S, Chattipakorn S, Chinda K, Fucharoen S, Chattipakorn N (2012) T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice. Eur J Haematol 88:535–548

    Article  PubMed  CAS  Google Scholar 

  • Lima PM, Neves Rde C, dos Santos FA, Pérez CA, da Silva MO, Arruda MA, de Castro GR, Padilha PM (2010) Analytical approach to the metallomic of Nile tilapia (Oreochromis niloticus) liver tissue by SRXRF and FAAS after 2D-PAGE separation: preliminary results. Talanta 82:1052–1056

    Article  PubMed  CAS  Google Scholar 

  • Mladenka P, Simůnek T, Hübl M, Hrdina R (2006) The role of reactive oxygen and nitrogen species in cellular iron metabolism. Free Radic Res 40:263–272

    Article  PubMed  CAS  Google Scholar 

  • Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C, Yazdanpanah M, Wilson GJ, Schwartz A, Liu PP, Backx PH (2003) l-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 9:1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Oudit GY, Trivieri MG, Khaper N, Liu PP, Backx PH (2006) Role of l-type Ca2+ channels in iron transport and iron-overload cardiomyopathy. J Mol Med (Berl) 84:349–364

    Article  CAS  Google Scholar 

  • Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202:199–211

    Article  PubMed  CAS  Google Scholar 

  • Ramos E, Ruchala P, Goodnough JB, Kautz L, Preza GC, Nemeth E, Ganz T (2012) Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood 120:3829–3836

    Article  PubMed  CAS  Google Scholar 

  • Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    Article  PubMed  CAS  Google Scholar 

  • Ryu DY, Lee SJ, Park DW, Choi BS, Klaassen CD, Park JD (2004) Dietary iron regulates intestinal cadmium absorption through iron transporters in rats. Toxicol Lett 152:19–25

    Article  PubMed  CAS  Google Scholar 

  • Stadler N, Heeneman S, Vöö S, Stanley N, Giles GI, Gang BP, Croft KD, Mori TA, Vacata V, Daemen MJ, Waltenberger J, Davies MJ (2012) Reduced metal ion concentrations in atherosclerotic plaques from subjects with type 2 diabetes mellitus. Atherosclerosis 222:512–518

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Ai J, Wang N, Zhang R, Li J, Zhang T, Wu W, Hang P, Lu Y, Yang B (2010) Cerebral ischemia elicits aberration in myocardium contractile function and intracellular calcium handling. Cell Physiol Biochem 26:421–430

    Article  PubMed  CAS  Google Scholar 

  • Tajima S, Ikeda Y, Sawada K, Yamano N, Horinouchi Y, Kihira Y, Ishizawa K, Izawa-Ishizawa Y, Kawazoe K, Tomita S, Minakuchi K, Tsuchiya K, Tamaki T (2012) Iron reduction by deferoxamine leads to amelioration of adiposity via the regulation of oxidative stress and inflammation in obese and type 2 diabetes KKAy mice. Am J Physiol Endocrinol Metab 302:E77–E86

    Article  PubMed  CAS  Google Scholar 

  • Tsushima RG, Wickenden AD, Bouchard RA, Oudit GY, Liu PP, Backx PH (1999) Modulation of iron uptake in heart by l-type Ca2+ channel modifiers: possible implications in iron overload. Circ Res 84:1302–1309

    Article  PubMed  CAS  Google Scholar 

  • Umbreit J (2005) Iron deficiency: a concise review. Am J Hematol 78:225–31

    Article  PubMed  CAS  Google Scholar 

  • Veuthey T, D'Anna MC, Roque ME (2008) Role of the kidney in iron homeostasis: renal expression of prohepcidin, ferroportin, and DMT1 in anemic mice. Am J Physiol Renal Physiol 295:F1213–F1221

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Miller DS, Zheng W (2008) Intracellular localization and subsequent redistribution of metal transporters in a rat choroid plexus model following exposure to manganese or iron. Toxicol Appl Pharmacol 230:167–174

    Article  PubMed  CAS  Google Scholar 

  • Ward DT, Hamilton K, Burnand R, Smith CP, Tomlinson DR, Riccardi D (2005) Altered expression of iron transport proteins in streptozotocin-induced diabetic rat kidney. Biochim Biophys Acta 1740:79–84

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Zhang B, Yin L, Cai B, Shan H, Zhang L, Lu Y, Bi Z (2011) Tanshinone IIA prevented brain iron dyshomeostasis in cerebral ischemic rats. Cell Physiol Biochem 27:23–30

    Article  PubMed  Google Scholar 

  • Zhao N, Sun Z, Mao Y, Hang P, Jiang X, Sun L, Zhao J, Du Z (2010) Myocardial iron metabolism in the regulation of cardiovascular diseases in rats. Cell Physiol Biochem 25:587–594

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the research grant (no. 1154z1008) from Education Department of Heilongjiang Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-min Du.

Additional information

Hong-li Shan and Yan Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

PDF 91 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, Hl., Wang, Y., Wu, Jw. et al. Verapamil reverses cardiac iron overload in streptozocin-induced diabetic rats. Naunyn-Schmiedeberg's Arch Pharmacol 386, 645–650 (2013). https://doi.org/10.1007/s00210-013-0863-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0863-2

Keywords

Navigation