Skip to main content
Log in

Decrease in heart adrenoceptor gene expression and receptor number as compensatory tool for preserved heart function and biological rhythm in M2 KO animals

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Muscarinic receptors (MR) are main cardioinhibitory receptors. We investigated the changes in gene expression, receptor number, echocardiography, muscarinic/adrenergic agonist/antagonist changes in heart rate (HR) and HR biorhythm in M2 KO mice (mice lacking the main cardioinhibitory receptors) in the left ventricle (LV) and right ventricle (RV). We hypothesize that the disruption of M2 MR, key players in parasympathetic bradycardia, would change the number of receptors with antagonistic effects on the heart (β1- and β2-adrenoceptors, BAR), while the function of the heart would be changed only marginally. We have found changes in LV, but not in RV: decrease in M3 MR, β1- and β2-adrenoceptor gene expressions that were accompanied by a decrease in MR and BAR receptor binding. No changes were found both in LV systolic and diastolic function as assessed by echocardiography (e.g., similar LV end-systolic and end-diastolic diameter, fractional shortening, mitral flow characteristics, and maximal velocity in LV outflow tract). We have found only marginal changes in specific HR biorhythm parameters. The effects of isoprenaline and propranolol on HR were similar in WT and KO (but with lesser extent). Atropine was not able to increase HR in KO animals. Carbachol decreased the HR in WT but increased HR in KO, suggesting the presence of cardiostimulatory MR. Therefore, we can conclude that although the main cardioinhibitory receptors are not present in the heart, the function is not much affected. As possible mechanisms of almost normal cardiac function, the decreases of both β1- and β2-adrenoceptor gene expression and receptor binding should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arraj M, Lemmer B (2006) Circadian rhythms in heart rate, motility, and body temperature of wild-type C57 and eNOS knock out mice under light–dark, free run, and after time zone transition. Chronobiol Int 23:795–812

    Article  PubMed  CAS  Google Scholar 

  • Benes J, Novakova M, Rotkova J, Farar V, Kvetnansky R, Riljak V, Myslivecek J (2012) Beta3 adrenoceptors substitute the role of M2 muscarinic receptor in coping with cold stress in the heart: evidence from M2KO mice. Cell Mol Neurobiol 32:589–869

    Article  Google Scholar 

  • Boknik P, Grote-Wessels S, Barteska G, Jiang M, Müller FU, Schmitz W, Neumann J, Birnbaumer L (2009) Genetic disruption of G proteins, Gi2α or Goα, does not abolish inotropic and chronotropic effects of stimulating muscarinic cholinoceptors in atrium. Br J Pharmacol 158:1557–1564

    Article  PubMed  CAS  Google Scholar 

  • Brodde OE (2008) Beta-1 and beta-2 adrenoceptor polymorphisms: functional importance, impact on cardiovascular diseases and drug responses. Pharmacol Ther 117:1–29

    Article  PubMed  CAS  Google Scholar 

  • Brodde OE, Leineweber K (2004) Autonomic receptor systems in the failing and aging human heart: similarities and differences. Eur J Pharmacol 500:167–176

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2009) Autonomic neurotransmission: 60 years since Sir Henry Dale. Annu Rev Pharmacol Toxicol 49:1–30

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Carter PA, Zhang L, Falcone JF, Stengel PW, Cohen ML, Shannon HE, Gomeza J, Wess J, Felder CC (2001) Investigations into the physiological role of muscarinic M2 and M4 muscarinic and M4 receptor subtypes using receptor knockout mice. Life Sci 68:2473–2479

    Article  PubMed  CAS  Google Scholar 

  • Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK (1999) Targeted disruption of the beta 2 adrenergic receptor gene. J Biol Chem 274:16694–16700

    Article  PubMed  CAS  Google Scholar 

  • Ecker PM, Lin CC, Powers J, Kobilka BK, Dubin AM, Bernstein D (2006) Effect of targeted deletions of beta1- and beta2-adrenergic-receptor subtypes on heart rate variability. Am J Physiol Heart Circ Physiol 290:H192–H199

    Article  PubMed  CAS  Google Scholar 

  • Fasano C, Niel J-P (2009) The mammalian sympathetic prevertebral ganglia: models for the study of neuronal networks and basic neuronal properties. Auton Neurosci 150:8–20

    Article  PubMed  CAS  Google Scholar 

  • Fisher JT, Vincent SG, Gomeza J, Yamada M, Wess J (2004) Loss of vagally mediated bradycardia and bronchoconstriction in mice lacking M2 or M3 muscarinic acetylcholine receptors. FASEB J 18:711–713

    PubMed  CAS  Google Scholar 

  • Garofolo MC, Seidler FJ, Auman JT, Slotkin TA (2002) Beta-adrenergic modulation of muscarinic cholinergic receptor expression and function in developing heart. Am J Physiol Regul Integr Comp Physiol 282:R1356–R1363

    PubMed  CAS  Google Scholar 

  • Giménez LED, Hernández CCQ, Mattos EC, Brandão IT, Olivieri B, Campelo RP, Araújo-Jorge T, Silva CL, Campos de Carvalho AC, Kurtenbach E (2005) DNA immunizations with M2 muscarinic and β1 adrenergic receptor coding plasmids impair cardiac function in mice. J Mol Cell Cardiol 38:703–714

    Article  PubMed  Google Scholar 

  • Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J (1999) Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:1692–1697

    Article  PubMed  CAS  Google Scholar 

  • Gomeza J, Zhang L, Kostenis E, Felder CC, Bymaster FP, Brodkin J, Shannon H, Xia B, Duttaroy A, Deng CX, Wess J (2001) Generation and pharmacological analysis of M2 and M4 muscarinic receptor knockout mice. Life Sci 68:2457–2466

    Article  PubMed  CAS  Google Scholar 

  • Göttle M, Geduhn J, König B, Gille A, Höcherl K, Seifert R (2009) Characterization of mouse heart adenylyl cyclase. J Pharmacol Exp Ther 329:1156–1165

    Article  PubMed  Google Scholar 

  • Grouzmann E, Cavadas C, Grand D, Moratel M, Aubert J-F, Brunner H, Mazzolai L (2003) Blood sampling methodology is crucial for precise measurement of plasma catecholamines concentrations in mice. Pflügers Arch Eur J Physiol 447:254–258

    Article  CAS  Google Scholar 

  • Hoffert JD, Chou CL, Fenton RA, Knepper MA (2005) Calmodulin is required for vasopressin-stimulated increase in cyclic AMP production in inner medullary collecting duct. J Biol Chem 280:13624–13630

    Article  PubMed  CAS  Google Scholar 

  • Imeri L, Bianchi S, Angeli P, Mancia M (1996) Muscarinic receptor subtypes in the medial preoptic area and sleep–wake cycles. Neuroreport 7:417–420

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Oyunzul L, Seki M, Fujino T, Matsui M, Yamada S (2009) Quantitative analysis of the loss of muscarinic receptors in various peripheral tissues in M1–M5 receptor single knockout mice. Br J Pharmacol 156:1147–1153

    Article  PubMed  CAS  Google Scholar 

  • Kiriazis H, Wang K, Xu Q, Gao XM, Ming Z, Su Y, Moore XL, Lambert G, Gibbs ME, Dart AM, Du XJ (2008) Knockout of β1- and β2-adrenoceptors attenuates pressure overload-induced cardiac hypertrophy and fibrosis. Br J Pharmacol 153:684–692

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa T, Asakawa K, Nakamura T, Teraoka H, Unno T, S-i K, Yamada M, Wess J (2009) M3 muscarinic receptors mediate positive inotropic responses in mouse atria: a study with muscarinic receptor knockout mice. J Pharmacol Exp Ther 330:487–493

    Article  PubMed  CAS  Google Scholar 

  • LaCroix C, Freeling J, Giles A, Wess J, Li Y-F (2008) Deficiency of M2 muscarinic acetylcholine receptors increases susceptibility of ventricular function to chronic adrenergic stress. Am J Physiol Heart Circ Physiol 294:H810–H820

    Article  PubMed  CAS  Google Scholar 

  • Lee NH, Fraser CM (1993) Cross-talk between m1 muscarinic acetylcholine and beta 2-adrenergic receptors. cAMP and the third intracellular loop of m1 muscarinic receptors confer heterologous regulation. J Biol Chem 268:7949–7957

    PubMed  CAS  Google Scholar 

  • Lee S, Grafweg S, Schneider T, Jimenez M, Giacobino JP, Ghanem A, Tiemann K, Bloch W, Muller-Ehmsen J, Schwinger RH, Brixius K (2010) Total beta-adrenoceptor deficiency results in cardiac hypotrophy and negative inotropy. Physiological Research/Academia Scientiarum Bohemoslovaca 59:679–689

    PubMed  CAS  Google Scholar 

  • Myslivecek J, Trojan S, Tucek S (1996) Biphasic changes in the density of muscarinic and beta-adrenergic receptors in cardiac atria of rats treated with diisopropylfluorophosphate. Life Sci 58:2423–2430

    Article  PubMed  CAS  Google Scholar 

  • Myslivecek J, Lisa V, Trojan S, Tucek S (1998) Heterologous regulation of muscarinic and beta-adrenergic receptors in rat cardiomyocytes in culture. Life Sci 63:1169–1182

    Article  PubMed  CAS  Google Scholar 

  • Myslivecek J, Duysen EG, Lockridge O (2007) Adaptation to excess acetylcholine by downregulation of adrenoceptors and muscarinic receptors in lungs of acetylcholinesterase knockout mice. Naunyn Schmiedebergs Arch Pharmacol 376:83–92

    Article  PubMed  CAS  Google Scholar 

  • Myslivecek J, Klein M, Novakova M, Ricny J (2008) The detection of the non-M2 muscarinic receptor subtype in the rat heart atria and ventricles. Naunyn Schmiedebergs Arch Pharmacol 378:103–116

    Article  PubMed  CAS  Google Scholar 

  • Ondicova K, Mravec B (2010) Multilevel interactions between the sympathetic and parasympathetic nervous systems: a minireview. Endocr Regul 44:69–75

    Article  PubMed  CAS  Google Scholar 

  • Paraschos A, Karliner JS (1994) Receptor crosstalk: effects of prolonged carbachol exposure on beta 1-adrenoceptors and adenylyl cyclase activity in neonatal rat ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol 350:267–276

    Article  PubMed  CAS  Google Scholar 

  • Racké K, Juergens UR, Matthiesen S (2006) Control by cholinergic mechanisms. Eur J Pharmacol 533:57–68

    Article  PubMed  Google Scholar 

  • Rhodes ME, Billings TE, Czambel RK, Rubin RT (2005) Pituitary–adrenal responses to cholinergic stimulation and acute mild stress are differentially elevated in male and female M2 muscarinic receptor knockout mice. J Neuroendocrinol 17:817–826

    PubMed  CAS  Google Scholar 

  • Rohrer DK, Desai KH, Jasper JR, Stevens ME, Regula DP Jr, Barsh GS, Bernstein D, Kobilka BK (1996) Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci USA 93:7375–7380

    Article  PubMed  CAS  Google Scholar 

  • Stavrakis S, Kem DC, Patterson E, Lozano P, Huang S, Szabo B, Cunningham MW, Lazzara R, Yu X (2011) Opposing cardiac effects of autoantibody activation of beta-adrenergic and M2 muscarinic receptors in cardiac-related diseases. Int J Cardiol 148:331–336

    Article  PubMed  Google Scholar 

  • Stengel PW, Gomeza J, Wess J, Cohen ML (2000) M(2) and M(4) receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther 292:877–885

    PubMed  CAS  Google Scholar 

  • Swoap SJ, Li C, Wess J, Parsons AD, Williams TD, Overton JM (2008) Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality. Am J Physiol Heart Circ Physiol 294:H1581–H1588

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Dalton N, Mao L, Rockman HA, Peterson KL, Gottshall KR, Hunter JJ, Chien KR, Ross J (1996) Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation 94:1109–1117

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg A-U, Meyer A, Wess J, Starke K (2005) Distinct mixtures of muscarinic receptor subtypes mediate inhibition of noradrenaline release in different mouse peripheral tissues, as studied with receptor knockout mice. Br J Pharmacol 145:1153–1159

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Shi H, Wang H (2004) Functional M3 muscarinic acetylcholine receptors in mammalian hearts. Br J Pharmacol 142:395–408

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Lu Y, Wang Z (2007) Function of cardiac M3 receptors. Auton Autacoid Pharmacol 27:1–11

    Article  PubMed  Google Scholar 

  • Werry TD, Wilkinson GF, Willars GB (2003) Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+. Biochem J 374:281–296

    Article  PubMed  CAS  Google Scholar 

  • Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, Miyakawa T, Bymaster FP, McKinzie L, Felder CC, Lamping KG, Faraci FM, Deng C, Yamada M (2003) M1–M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Receptors Channels 9:279–290

    Article  PubMed  CAS  Google Scholar 

  • Willmy-Matthes P, Leineweber K, Wangemann T, Silber RE, Brodde OE (2003) Existence of functional M3-muscarinic receptors in the human heart. Naunyn Schmiedebergs Arch Pharmacol 368:316–319

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Levy M (1984) The phase-dependency of the cardiac chronotropic responses to vagal stimulation as a factor in sympathetic-vagal interactions. Circ Res 54:703–710

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Meyer A, Starke K, Gomeza J, Wess J, Trendelenburg AU (2002) Heterogeneity of release-inhibiting muscarinic autoreceptors in heart atria and urinary bladder: a study with M(2)- and M(4)-receptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 365:112–122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant GACR309/09/0406. We thank Dr. Jürgen Wess (NIH, Bethesda, MD, USA) for providing the muscarinic receptor mutant mice, Prof. Michal Zeman (Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia) for advice with biorhythm analysis, and Prof. Ludek Cervenka (Institute for Clinical and Experimental Medicine, Prague, Czech Republic) for the great help with echocardiography study. The technical assistance of Petra Svatosova is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaromir Myslivecek.

Additional information

Jan Benes and Eva Varejkova participated equally on this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Saturation binding to muscarinic (left) and -adrenergic (right) receptors in WT (above) and KO (below) animals. Abscissa: concentration of free radioligand [nmol.l-1].Ordinate: Bmax [fmol.mg prot.-1]. Insert: Scatchard plot of binding. MR Muscarinic receptors; BAR, β-adrenoceptors. (JPEG 75 kb)

High resolution image (TIFF 231 kb)

Figure S2

Competition binding curves for CGP 20712A (1-AR antagonist) and ICI118.551 (2-AR antagonist) with 3H-CGP12177. Average data from 4 independent experiments. Abscissa: log of antagonist concentration.Ordinate: Bound [% of binding in the absence of antagonist]. (JPEG 49 kb)

High resolution image (TIFF 175 kb)

Figure S3

The representative echocardiograms in WT and KO mice. Left: WT mice, right: KO mice. Top: Two-dimensional echocardiogram: end diastole, M-mode echocardiogram from the same mouse in the parasternal short-axis view. Middle: left ventricle outflow tract (two-dimensional echocardiogram, pulsed wave Doppler tracing). Bottom: mitral view (two-dimensional echocardiogram, pulsed wave Doppler tracing). (JPEG 129 kb)

High resolution image (TIFF 6506 kb)

Figure S4

The representative figure of spectral density vs. period and spectral density vs. frequency in WT and KO animals. No difference was observed between KO and WT mice. (JPEG 58 kb)

High resolution image (TIFF 1710 kb)

Figure S5

The gene expression of TH, DBH and PNMT in WT and KO animals. No change in gene expression was observed. (JPEG 133 kb)

High resolution image (TIFF 1540 kb)

Figure S6

The changes in activity in KO mice. Top: average activity. Middle: the activity in the light and dark phase (day or night). Bottom: comparison of biorhythm in WT and KO animals. ***p<0.001 different from WT. ###p<0.001 different from KO day, one-way ANOVA (p< 0.0001, F=15.83, df=93). (JPEG 90 kb)

High resolution image (TIFF 1337 kb)

Figure S7

The changes in temperature in KO mice. Top: average temperature. Middle: the temperature in the light and dark phase (day or night). Bottom: comparison of biorhythm in WT and KO animals. ****p<0.0001 different from WT, ***p<0.001 different from WT day, ###p<0.001 different from KO day, +++p<0.001 different from WT night, one-way ANOVA (p< 0.0001, F=36.18, df=93). (JPEG 79 kb)

High resolution image (TIFF 1295 kb)

Figure S8

The actograms of representative WT and KO mice showing increased values of respective parameters (black rectangles). Abscissa: time starting at 6:00 AM and showing two consecutive days in one row. Ordinate: The number of row representing two days. From top to bellow: WT activity, KO activity, WT HR, KO HR, WT temperature, KO temperature. (JPEG 176 kb)

High resolution image (TIFF 1896 kb)

ESM 9

(DOCX 13 kb)

ESM 10

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benes, J., Varejkova, E., Farar, V. et al. Decrease in heart adrenoceptor gene expression and receptor number as compensatory tool for preserved heart function and biological rhythm in M2 KO animals. Naunyn-Schmiedeberg's Arch Pharmacol 385, 1161–1173 (2012). https://doi.org/10.1007/s00210-012-0800-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-012-0800-9

Keywords

Navigation