Skip to main content
Log in

Losartan exerts no protective effects against acute pulmonary embolism-induced hemodynamic changes

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The acute obstruction of pulmonary vessels by venous thrombi is a critical condition named acute pulmonary embolism (APE). During massive APE, severe pulmonary hypertension may lead to death secondary to right heart failure and circulatory shock. APE-induced pulmonary hypertension is aggravated by active pulmonary vasoconstriction. While blocking the effects of some vasoconstrictors exerts beneficial effects, no previous study has examined whether angiotensin II receptor blockers protect against the hemodynamic changes associated with APE. We examined the effects exerted by losartan on APE-induced hemodynamic changes. Hemodynamic evaluations were performed in non-embolized lambs treated with saline (n = 4) and in lambs that were embolized with silicon microspheres and treated with losartan (30 mg/kg followed by 1 mg/kg/h, n = 5) or saline (n = 7) infusions. The plasma and lung angiotensin-converting enzyme (ACE) activity were assessed using a fluorometric method. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 21 ± 2 mmHg and 375 ± 20 dyn s cm−5 m−2, respectively (P < 0.05). Losartan decreased MPAP significantly (by approximately 15%), without significant changes in PVRI and tended to decrease cardiac index (P > 0.05). Lung and plasma ACE activity were similar in both embolized and non-embolized animals. Our findings show evidence of lack of activation of the renin–angiotensin system during APE. The lack of significant effects of losartan on the pulmonary vascular resistance suggests that losartan does not protect against the hemodynamic changes found during APE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ay C, Bencur P, Vormittag R, Sailer T, Jungbauer C, Vukovich T, Mannhalter C, Pabinger I (2007) The angiotensin-converting enzyme insertion/deletion polymorphism and serum levels of angiotensin-converting enzyme in venous thromboembolism. Data from a case control study. Thromb Haemost 98(4):777–782

    PubMed  CAS  Google Scholar 

  • Barnes PJ, Liu SF (1995) Regulation of pulmonary vascular tone. Pharmacol Rev 47(1):87–131

    PubMed  CAS  Google Scholar 

  • Battistini B (2003) Modulation and roles of the endothelins in the pathophysiology of pulmonary embolism. Can J Physiol Pharmacol 81(6):555–569

    Article  PubMed  CAS  Google Scholar 

  • Bertolino F, Valentin JP, Maffre M, Jover B, Bessac AM, John GW (1994) Prevention of thromboxane a2 receptor-mediated pulmonary hypertension by a nonpeptide angiotensin II type 1 receptor antagonist. J Pharmacol Exp Ther 268(2):747–752

    PubMed  CAS  Google Scholar 

  • Bonnet JM, Boivin R (2000) Comparative study of the cardiovascular effects of losartan in normal and in water- and salt-depleted sheep. J Vet Med Sci 62(9):925–931

    Article  PubMed  CAS  Google Scholar 

  • Cargill RI, Lipworth BJ (1995) The role of the renin-angiotensin and natriuretic peptide systems in the pulmonary vasculature. Br J Clin Pharmacol 40(1):11–18

    PubMed  CAS  Google Scholar 

  • Cody RJ, Binkley PF, Haas GJ, Brown DM (1995) Acute myocardial and vascular responses to specific angiotensin II antagonism in the spontaneously hypertensive rat. Am J Hypertens 8(5 Pt 1):500–508

    Article  PubMed  CAS  Google Scholar 

  • Dempsey PJ, McCallum ZT, Kent KM, Cooper T (1971) Direct myocardial effects of angiotensin II. Am J Physiol 220(2):477–481

    PubMed  CAS  Google Scholar 

  • Dias-Junior CA, Souza-Costa DC, Zerbini T, da Rocha JB, Gerlach RF, Tanus-Santos JE (2005a) The effect of sildenafil on pulmonary embolism-induced oxidative stress and pulmonary hypertension. Anesth Analg 101(1):115–120

    Article  PubMed  CAS  Google Scholar 

  • Dias-Junior CA, Vieira TF, Moreno H Jr, Evora PR, Tanus-Santos JE (2005b) Sildenafil selectively inhibits acute pulmonary embolism-induced pulmonary hypertension. Pulm Pharmacol Ther 18(3):181–186

    Article  PubMed  CAS  Google Scholar 

  • Dias-Junior CA, Sertorio JT, Tanus-Santos JE (2007) Aminoguanidine produces beneficial haemodynamic effects in a canine model of acute pulmonary thromboembolism. Acta Physiol (Oxf) 191(3):189–196

    Article  CAS  Google Scholar 

  • Dias-Junior CA, Montenegro MF, Florencio BC, Tanus-Santos JE (2008) Sildenafil improves the beneficial haemodynamic effects of intravenous nitrite infusion during acute pulmonary embolism. Basic Clin Pharmacol Toxicol 103(4):374–379

    Article  PubMed  Google Scholar 

  • Dias-Junior CA, Neto-Neves EM, Montenegro MF, Tanus-Santos JE (2010) Hemodynamic effects of inducible nitric oxide synthase inhibition combined with sildenafil during acute pulmonary embolism. Nitric Oxide 23(4):284–288

    Article  PubMed  CAS  Google Scholar 

  • Fortuna GM, Figueiredo-Lopes L, Dias-Junior CA, Gerlach RF, Tanus-Santos JE (2007) A role for matrix metalloproteinase-9 in the hemodynamic changes following acute pulmonary embolism. Int J Cardiol 114(1):22–27

    Article  PubMed  Google Scholar 

  • Goll HM, Nyhan DP, Geller HS, Murray PA (1986) Pulmonary vascular responses to angiotensin II and captopril in conscious dogs. J Appl Physiol 61(4):1552–1559

    PubMed  CAS  Google Scholar 

  • Hales CA, Rouse ET, Kazemi H (1977) Failure of saralasin acetate, a competitive inhibitor of angiotensin II, to diminish alveolar hypoxic vasoconstriction in the dog. Cardiovasc Res 11(6):541–546

    Article  PubMed  CAS  Google Scholar 

  • Hubloue I, Rondelet B, Kerbaul F, Biarent D, Milani GM, Staroukine M, Bergmann P, Naeije R, Leeman M (2004) Endogenous angiotensin II in the regulation of hypoxic pulmonary vasoconstriction in anaesthetized dogs. Crit Care 8(4):R163–R171

    Article  PubMed  Google Scholar 

  • Johnson JA, Hemnes AR, Lane K, Robinson L, Gladson S, West J (2010) Olmesartan does not treat pulmonary arterial hypertension in bmpr2r899x mice. Am J Respir Crit Care Med 181:A6326

    Google Scholar 

  • Kiely DG, Cargill RI, Lipworth BJ (1995) Acute hypoxic pulmonary vasoconstriction in man is attenuated by type I angiotensin II receptor blockade. Cardiovasc Res 30(6):875–880

    PubMed  CAS  Google Scholar 

  • Kiely DG, Cargill RI, Lipworth BJ (1996) Angiotensin II receptor blockade and effects on pulmonary hemodynamics and hypoxic pulmonary vasoconstriction in humans. Chest 110(3):698–703

    Article  PubMed  CAS  Google Scholar 

  • Kishi K, Jin D, Takai S, Muramatsu M, Katayama H, Tamai H, Miyazaki M (2006) Role of chymase-dependent angiotensin II formation in monocrotaline-induced pulmonary hypertensive rats. Pediatr Res 60(1):77–82

    Article  PubMed  CAS  Google Scholar 

  • Kooter AJ, Ijzerman RG, Kamp O, Boonstra AB, Smulders YM (2010) No effect of epoprostenol on right ventricular diameter in patients with acute pulmonary embolism: a randomized controlled trial. BMC Pulm Med 10:18

    Article  PubMed  Google Scholar 

  • Layish DT, Tapson VF (1997) Pharmacologic hemodynamic support in massive pulmonary embolism. Chest 111(1):218–224

    Article  PubMed  CAS  Google Scholar 

  • Leeman M, Lejeune P, Naeije R (1987) Inhibition of angiotensin-converting enzyme by perindopril diacid in canine oleic acid pulmonary edema. Crit Care Med 15(6):567–573

    Article  PubMed  CAS  Google Scholar 

  • Matys T, Kucharewicz I, Pawlak R, Chabielska E, Domaniewski T, Buczko W (2003) Nitric oxide-dependent antiplatelet action of at1-receptor antagonists in a pulmonary thromboembolism in mice. J Cardiovasc Pharmacol 42(6):710–713

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki M, Takai S (2006) Tissue angiotensin II generating system by angiotensin-converting enzyme and chymase. J Pharmacol Sci 100(5):391–397

    Article  PubMed  CAS  Google Scholar 

  • Montenegro MF, Pessa LR, Tanus-Santos JE (2009) Isoflavone genistein inhibits the angiotensin-converting enzyme and alters the vascular responses to angiotensin I and bradykinin. Eur J Pharmacol 607(1–3):173–177

    Article  PubMed  CAS  Google Scholar 

  • Neto-Neves EM, Montenegro MF, Dias-Junior CA, Spiller F, Kanashiro A, Tanus-Santos JE (2010) Chronic treatment with quercetin does not inhibit angiotensin-converting enzyme in vivo or in vitro. Basic Clin Pharmacol Toxicol 107(4):825–829

    Article  PubMed  CAS  Google Scholar 

  • Nilsson KF, Gustafsson LE, Adding LC, Linnarsson D, Agvald P (2007) Increase in exhaled nitric oxide and protective role of the nitric oxide system in experimental pulmonary embolism. Br J Pharmacol 150(4):494–501

    Article  PubMed  CAS  Google Scholar 

  • Nong ZSJ, Moons L, Collen D, Janssens S (1996) Inhibition of tissue angiotensin-converting enzyme with quinapril reduces hypoxic pulmonary hypertension and pulmonary vascular remodeling. Circulation 94:1941–1947

    PubMed  CAS  Google Scholar 

  • Rondelet B, Kerbaul F, Van Beneden R, Hubloue I, Huez S, Fesler P, Remmelink M, Brimioulle S, Salmon I, Naeije R (2005) Prevention of pulmonary vascular remodeling and of decreased BMPR-2 expression by losartan therapy in shunt-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 289(6):H2319–H2324

    Article  PubMed  CAS  Google Scholar 

  • Smulders YM (2000) Pathophysiology and treatment of haemodynamic instability in acute pulmonary embolism: the pivotal role of pulmonary vasoconstriction. Cardiovasc Res 48(1):23–33

    Article  PubMed  CAS  Google Scholar 

  • Smulders YM (2001) Contribution of pulmonary vasoconstriction to haemodynamic instability after acute pulmonary embolism. Implications for treatment? Neth J Med 58(6):241–247

    Article  PubMed  CAS  Google Scholar 

  • Souza-Costa DC, Zerbini T, Metzger IF, Rocha JB, Gerlach RF, Tanus-Santos JE (2005) l-arginine attenuates acute pulmonary embolism-induced oxidative stress and pulmonary hypertension. Nitric Oxide 12(1):9–14

    Article  PubMed  CAS  Google Scholar 

  • Souza-Costa DC, Figueiredo-Lopes L, Alves-Filho JC, Semprini MC, Gerlach RF, Cunha FQ, Tanus-Santos JE (2007) Protective effects of atorvastatin in rat models of acute pulmonary embolism: involvement of matrix metalloproteinase-9. Crit Care Med 35(1):239–245

    Article  PubMed  CAS  Google Scholar 

  • Souza-Silva AR, Dias-Junior CA, Uzuelli JA, Moreno H Jr, Evora PR, Tanus-Santos JE (2005) Hemodynamic effects of combined sildenafil and l-arginine during acute pulmonary embolism-induced pulmonary hypertension. Eur J Pharmacol 524(1–3):126–131

    Article  PubMed  CAS  Google Scholar 

  • Stevenson KM, Gibson KJ, Lumbers ER (1995) Comparison of the transplacental transfer of enalapril, captopril and losartan in sheep. Br J Pharmacol 114(7):1495–1501

    PubMed  CAS  Google Scholar 

  • Tanus-Santos JE, Moreno H Jr, Moreno RA, Martins ML, Pereira R, de Nucci G (1999a) Inhaled nitric oxide improves hemodynamics during a venous air infusion (VAI) in dogs. Intensive Care Med 25(9):983–989

    Article  PubMed  CAS  Google Scholar 

  • Tanus-Santos JE, Moreno H Jr, Zappellini A, de Nucci G (1999b) Small-dose inhaled nitric oxide attenuates hemodynamic changes after pulmonary air embolism in dogs. Anesth Analg 88(5):1025–1029

    PubMed  CAS  Google Scholar 

  • Tanus-Santos JE, Gordo WM, Udelsmann A, Cittadino MH, Moreno H Jr (2000a) Nonselective endothelin-receptor antagonism attenuates hemodynamic changes after massive pulmonary air embolism in dogs. Chest 118(1):175–179

    Article  PubMed  CAS  Google Scholar 

  • Tanus-Santos JE, Gordo WM, Udelsmann A, Moreno H Jr (2000b) The hemodynamic effects of endothelin receptor antagonism during a venous air infusion in dogs. Anesth Analg 90(1):102–106

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, Kawashima A, Koike H, Nishio S (1995) Effect of beraprost sodium, a stable prostacyclin analogue, on pulmonary thromboembolism in mice. Thromb Res 77(2):193–198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Conselho Nacional de Dsenvolvimento Cientifico e Tecnologico (CNPq), and Coordenadoria de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose E. Tanus-Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias-Junior, C.A., Neto-Neves, E.M., Montenegro, M.F. et al. Losartan exerts no protective effects against acute pulmonary embolism-induced hemodynamic changes. Naunyn-Schmiedeberg's Arch Pharmacol 385, 211–217 (2012). https://doi.org/10.1007/s00210-011-0695-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0695-x

Keywords

Navigation