Skip to main content

Advertisement

Log in

Synthesis and characterisation of NS13558: a new important tool for addressing KCa1.1 channel function ex vivo

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Pharmacological activation of the large-conductance Ca2+-activated K+ channel (KCa1.1) in the cardiac inner mitochondrial membrane has been found to protect the heart against ischemia reperfusion injuries. However, there are concerns about the selectivity of the pharmacological tools used to modulate the channel. Here, we address this issue by synthesising a methylated analogue of the tool KCa1.1 channel activator NS11021. The compound (NS13558) is designed as a structurally closely related and biologically inactive analogue of NS11021. NS13558 did not elicit any significant opening of cloned human KCa1.1 channels, but maintained comparable biological activity towards other cardiac ion channels as compared to NS11021. In isolated perfused rat hearts subjected to ischemia–reperfusion, infarct size was reduced from 29% in control to 7% in NS11021 treated hearts. In comparison, the inactive derivate of NS11021, i.e., NS13558, did not confer any cardioprotection, demonstrated by an infarct size identical to control hearts. This suggests that NS11021 exerts its primary effect through KCa1.1 channels, which indicates an important role of these channels in protection against ischemia–reperfusion injuries. Furthermore, the study demonstrates a novel way of combining an activator of the KCa1.1 channel (NS11021) and its structurally closely related inactive analogue NS13558 to address the functional role of KCa1.1 channels, and we believe these novel tools may constitute a valuable addition to understanding the functional role of KCa1.1 channels under physiological and pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HEK-cells:

human embryonic kidney 293 cells

DMSO:

dimethyl sulphoxide

LVDP:

Left ventricular developed pressure

LVeDP:

left ventricular end-diastolic pressure

TTC:

2,3,5-triphenyltetrazolium chloride

APD:

action potential duration at 90% repolarization

UPLC:

ultra performance liquid chromatography

MS:

mass spectrometry

FT-IR:

Fourier transform infrared spectroscopy

HPLC:

high-performance liquid chromatography

ESI-HRMS:

electron spray ionisation high resolution mass spectra

LC:

liquid chromatography

M.p.:

melting point

References

  • Andreini F, Biagi G, Giorgi I, Livi O, Scartoni V (1989) Modification of the 1, 2, 3-triazole ring present in an effective in vitro inhibitor of the prostaglandin synthesis. Farmaco 44:831–841

    CAS  PubMed  Google Scholar 

  • Bentzen BH, Nardi A, Calloe K, Madsen LS, Olesen SP, Grunnet M (2007) The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+ channels. Mol Pharmacol 72:1033–1044

    Article  CAS  PubMed  Google Scholar 

  • Bentzen BH, Osadchii O, Jespersen T, Hansen RS, Olesen SP, Grunnet M (2008) Activation of big conductance Ca(2+)-activated K(+) channels (BK) protects the heart against ischemia–reperfusion injury. Pflugers Arch

  • Cancherini DV, Queliconi BB, Kowaltowski AJ (2007) Pharmacological and physiological stimuli do not promote Ca(2+)-sensitive K+ channel activity in isolated heart mitochondria. Cardiovasc Res 73:720–728

    Article  CAS  PubMed  Google Scholar 

  • Cao CM, Xia Q, Gao Q, Chen M, Wong TM (2005) Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning. J Pharmacol Exp Ther 312:644–650

    Article  CAS  PubMed  Google Scholar 

  • De Boer TJ, Backer HJ (1963) Diazomethane. Org Synth 36:16–19

    Google Scholar 

  • Debska G, Kicinska A, Dobrucki J, Dworakowska B, Nurowska E, Skalska J, Dolowy K, Szewczyk A (2003) Large-conductance K+ channel openers NS1619 and NS004 as inhibitors of mitochondrial function in glioma cells. Biochem Pharmacol 65:1827–1834

    Article  CAS  PubMed  Google Scholar 

  • Douglas RM, Lai JC, Bian S, Cummins L, Moczydlowski E, Haddad GG (2006) The calcium-sensitive large-conductance potassium channel (BK/MAXI K) is present in the inner mitochondrial membrane of rat brain. Neuroscience 139:1249–1261

    Article  CAS  PubMed  Google Scholar 

  • Edwards G, Niederste-Hollenberg A, Schneider J, Noack T, Weston AH (1994) Ion channel modulation by NS 1619, the putative BKCa channel opener, in vascular smooth muscle. Br J Pharmacol 113:1538–1547

    CAS  PubMed  Google Scholar 

  • Grunnet M, Jensen BS, Olesen SP, Klaerke DA (2001) Apamin interacts with all subtypes of cloned small-conductance Ca2+-activated K+ channels. Pflugers Arch 441:544–550

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Clarke SJ, Khaliulin I (2007) The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta 1767:1007–1031

    Article  CAS  PubMed  Google Scholar 

  • Hansen RS, Diness TG, Christ T, Demnitz J, Ravens U, Olesen SP, Grunnet M (2006) Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643). Mol Pharmacol 69:266–277

    CAS  PubMed  Google Scholar 

  • Heinen A, Camara AK, Aldakkak M, Rhodes SS, Riess ML, Stowe DF (2007) Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. Am J Physiol Cell Physiol 292:C148–C156

    Article  CAS  PubMed  Google Scholar 

  • Holland GF, Pereira JN (1967) Heterocyclic tetrazoles, a new class of lipolysis inhibitors. J Med Chem 10:149–154

    Article  CAS  PubMed  Google Scholar 

  • Holland M, Langton PD, Standen NB, Boyle JP (1996) Effects of the BKCa channel activator, NS1619, on rat cerebral artery smooth muscle. Br J Pharmacol 117:119–129

    CAS  PubMed  Google Scholar 

  • Jespersen T, Grunnet M, Angelo K, Klaerke DA, Olesen SP (2002) Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes. Biotechniques 32:536–540

    CAS  PubMed  Google Scholar 

  • Longland CL, Dyer JL, Michelangeli F (2000) The mycotoxin paxilline inhibits the cerebellar inositol 1,4,5-trisphosphate receptor. Eur J Pharmacol 408:219–225

    Article  CAS  PubMed  Google Scholar 

  • Nardi A, Olesen S-P (2008) Curr Med Chem 15:1126–1146

    Article  CAS  PubMed  Google Scholar 

  • Nardi A, Demnitz D, Grunnet M, Christophersen P, Jones DS, Nielsen EO, Stroebaek D, Madsen LS (2008a) Preparation of novel biphenyl thiourea derivatives useful as potassium channel modulators. PCT Int Appl WO/2008/074756

  • Nardi A, Christensen JK, Christophersen P, Jones DS, Nielsen EO, Stroebaek D, Madsen LS (2008b) Preparation of novel aromatic heterocyclic carboxylic acid amide derivatives as potassium channel modulators. PCT Int Appl WO/2008/138917

  • Nardi A, Demnitz D, Grunnet M, Christophersen P, Jones DS, Nielsen EO, Stroebaek D, Madsen LS (2008c) Preparation of novel benzamidine derivatives as potassium channel modulators. PCT Int Appl WO/2008/135591

  • Nardi A, Demnitz D, Grunnet M, Christophersen P, Jones DS, Nielsen EO, Stroebaek D, Madsen LS (2008d) Preparation of β-keto-amide derivatives useful as ion channel modulators. PCT Int Appl WO/2008/135448

  • Nardi A, Grunnet M, Christophersen P, Demnitz J, Jones DS, Nielsen EO, Stroebaek D, Madsen LS (2008e) Preparation of acetamide derivatives as potassium channel modulators. PCT Int Appl WO/2008/135447

  • Nardi A, Grunnet M, Christophersen P, Demnitz J, Jones DS, Nielsen EO, Stroebaek D, Madsen LS (2008f) Preparation of diaryltriazole derivatives for use as potassium channel modulators. PCT Int Appl WO/2008/087178

  • Nardi A, Demnitz D, Grunnet M, Christophersen P, Jones DS, Nielsen EO, Stroebaek D, Madsen LS (2008g) Preparation of novel semicarbazide and carbonylhydrazide derivatives useful as potassium channel modulators. PCT Int Appl WO/2008/087177

  • Nardi A, Grunnet M, Demnitz J, Jensen TD, Christophersen P, Jones DS, Nielsen EO, Stroebaek D, Madsen LS (2008h) Preparation of novel cinnamic amide derivatives useful as ion channel modulators. PCT Int Appl WO/2008/074755

  • Nardi A, Christensen JK, Jones DS (2009) Preparation of novel pyrazole derivatives useful as potassium channel modulators. PCT Int Appl WO/2009/003921

  • O’Rourke B (2007) Mitochondrial ion channels. Annu Rev Physiol 69:19–49

    Article  PubMed  Google Scholar 

  • Ohya S, Kuwata Y, Sakamoto K, Muraki K, Imaizumi Y (2005) Cardioprotective effects of estradiol include the activation of large-conductance Ca(2+)-activated K(+) channels in cardiac mitochondria. Am J Physiol Heart Circ Physiol 289:1635–1642

    Google Scholar 

  • Olesen SP, Munch E, Moldt P, Drejer J (1994) Selective activation of Ca(2+)-dependent K+ channels by novel benzimidazolone. Eur J Pharmacol 251:53–59

    Article  CAS  PubMed  Google Scholar 

  • Park WS, Kang SH, Son YK, Kim N, Ko JH, Kim HK, Ko EA, Kim CD, Han J (2007) The mitochondrial Ca2+-activated K+ channel activator, NS 1619 inhibits l-type Ca2+ channels in rat ventricular myocytes. Biochem Biophys Res Commun 362:31–36

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Nonomura T, Ohya S, Muraki K, Ohwada T, Imaizumi Y (2006) Molecular mechanisms for large conductance Ca2+-activated K+ channel activation by a novel opener, 12,14-dichlorodehydroabietic acid. J Pharmacol Exp Ther 316:144–153

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Ohya S, Muraki K, Imaizumi Y (2008) A novel opener of large-conductance Ca2+-activated K+ (BK) channel reduces ischemic injury in rat cardiac myocytes by activating mitochondrial K(Ca) channel. J Pharmacol Sci 108:135–139

    Article  CAS  PubMed  Google Scholar 

  • Saleh SN, Angermann JE, Sones WR, Leblanc N, Greenwood IA (2007) Stimulation of Ca2+-gated Cl-currents by the calcium-dependent K+ channel modulators NS1619 [1, 3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2 H-benzimidazol-2-one] and isopimaric acid. J Pharmacol Exp Ther 321:1075–1084

    Article  CAS  PubMed  Google Scholar 

  • Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F (1999) Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun 257:549–554

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yin C, Xi L, Kukreja RC (2004) Opening of Ca2+-activated K+ channels triggers early and delayed preconditioning against I/R injury independent of NOS in mice. Am J Physiol Heart Circ Physiol 287:H2070–H2077

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O’Rourke B (2002) Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Camilla Irlind for excellent technical assistance. This study was supported by the Novo Nordisk Foundation, the Aase and Ejnar Danielsen Foundation, the Danish National Research Foundation Centre for Cardiac Arrhythmia, and the Danish Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Nardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentzen, B.H., Andersen, R.W., Olesen, SP. et al. Synthesis and characterisation of NS13558: a new important tool for addressing KCa1.1 channel function ex vivo. Naunyn-Schmied Arch Pharmacol 381, 271–283 (2010). https://doi.org/10.1007/s00210-009-0456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0456-2

Keywords

Navigation