Skip to main content
Log in

Effects of duramycin on cardiac voltage-gated ion channels

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The amphipathic peptide duramycin is in clinical development for the treatment of cystic fibrosis. It is deposited in cellular membranes where it binds to phosphatidylethanolamine. Duramycin may thereby change the biophysical membrane properties and perturb the function of ion channels. If so, in heart tissue, its application carries the risk to elicit cardiac arrhythmias. In fact, premature ventricular complexes were observed in the electrocardiogram during toxicological testing in dogs. To study the arrhythmogenic potential of duramycin, we investigated its effects on currents through voltage-gated hERG potassium, sodium, and calcium channels in native cells, and using a heterologous expression system, by means of the whole-cell patch clamp technique; duramycin bath concentrations between 1 nM and 0.1 μM did not generate any effects on these currents. Concentrations ≥0.3 μM, however, reduced the amplitudes of all investigated currents. Moreover, sodium current fast inactivation kinetics was slowed in the presence of duramycin. A further rise in duramycin bath concentration (≥3.3 μM) induced a leak current consistent with pore formation. The reported effects of duramycin on ion channel function are likely to arise from a change in the biophysical properties of the membrane rather than from a specific interaction of the peptide with ion channel proteins. Under therapeutic conditions (i.e., administration via inhalation), duramycin plasma concentrations are below 0.5 nM. Thus, upon inhalation, duramycin has a large safety margin and is highly unlikely to elicit arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Burnashev NA, Undrovinas AI, Fleidervish IA, Makielski JC, Rosenshtraukh LV (1991) Modulation of cardiac sodium channel gating by lysophosphatidylcholine. J Mol Cell Cardiol 1(23 Suppl):23–30

    Article  Google Scholar 

  • Burnashev NA, Undrovinas AI, Fleidervish IA, Rosenshtraukh LV (1989) Ischemic poison lysophosphatidylcholine modifies heart sodium channels gating inducing long-lasting bursts of openings. Pflugers Arch 415:124–126

    Article  PubMed  CAS  Google Scholar 

  • Clarkson CW, Ten Eick RE (1983) On the mechanism of lysophosphatidylcholine-induced depolarization of cat ventricular myocardium. Circ Res 52:543–556

    PubMed  CAS  Google Scholar 

  • Cloutier MM, Guernsey L, Mattes P, Koeppen B (1990) Duramycin enhances chloride secretion in airway epithelium. Am J Physiol 259:C450–C454

    PubMed  CAS  Google Scholar 

  • Cloutier MM, Guernsey L, Sha ’afi RI (1993) Duramycin increases intracellular calcium in airway epithelium. Membr Biochem 10:107–118

    Article  PubMed  CAS  Google Scholar 

  • DaTorre SD, Creer MH, Pogwizd SM, Corr PB (1991) Amphipathic lipid metabolites and their relation to arrhythmogenesis in the ischemic heart. J Mol Cell Cardiol 1(23 Suppl):11–22

    Article  Google Scholar 

  • De Paola AA, Horowitz LN, Morganroth J, Senior S, Spielman SR, Greenspan AM, Kay HR (1987) Influence of left ventricular dysfunction on flecainide therapy. J Am Coll Cardiol 9:163–168

    Article  PubMed  Google Scholar 

  • Denac H, Mevissen M, Scholtysik G (2000) Structure, function and pharmacology of voltage-gated sodium channels. Naunyn-Schmiedeberg’s Arch Pharmacol 362:453–479

    Article  CAS  Google Scholar 

  • Gilmour RF Jr, Zipes DP (1985) Slow inward current and cardiac arrhythmias. Am J Cardiol 55:89B–101B

    Article  PubMed  Google Scholar 

  • Grasemann H, Stehling F, Brunar H, Widmann R, Laliberte TW, Molina L, Doring G, Ratjen F (2007) Inhalation of Moli1901 in patients with cystic fibrosis. Chest 131:1461–1466

    Article  PubMed  CAS  Google Scholar 

  • Herre JM, Titus C, Oeff M, Eldar M, Franz MR, Griffin JC, Scheinman MM (1990) Inefficacy and proarrhythmic effects of flecainide and encainide for sustained ventricular tachycardia and ventricular fibrillation. Ann Intern Med 113:671–676

    PubMed  CAS  Google Scholar 

  • Hirsh JK, Quandt FN (1996) Down-regulation of Na channel expression by A23187 in N1E-115 Neuroblastoma Cells. Brain Res 706:343–346

    Article  PubMed  CAS  Google Scholar 

  • Hoffman BF, Rosen MR (1981) Cellular mechanisms for cardiac arrhythmias. Circ Res 49:1–15

    PubMed  CAS  Google Scholar 

  • Iwamoto K, Hayakawa T, Murate M, Makino A, Ito K, Fujisawa T, Kobayashi T (2007) Curvature-dependent recognition of ethanolamine phospholipids by duramycin and cinnamycin. Biophys J 93:1608–1619

    Article  PubMed  CAS  Google Scholar 

  • Kannankeril PJ, Roden DM (2007) Drug-induced long QT and torsade de pointes: recent advances. Curr Opin Cardiol 22:39–43

    Article  PubMed  Google Scholar 

  • Kester MB, Sokolove PM (1990) The effect of adriamycin and duramycin on calcium translocation in liposome systems modeled on the inner mitochondrial membrane. Arch Biochem Biophys 280:405–411

    Article  PubMed  CAS  Google Scholar 

  • Kirsch GE, Trepakova ES, Brimecombe JC, Sidach SS, Erickson HD, Kochan MC, Shyjka LM, Lacerda AE, Brown AM (2004) Variability in the measurement of HERG potassium channel inhibition: effects of temperature and stimulus pattern. J Pharmacol Toxicol Methods 50:93–101

    Article  PubMed  CAS  Google Scholar 

  • Marki F, Hanni E, Fredenhagen A, van Oostrum J (1991) Mode of action of the lanthionine-containing peptide antibiotics duramycin, duramycin B and C, and cinnamycin as indirect inhibitors of phospholipase A2. Biochem Pharmacol 42:2027–2035

    Article  PubMed  CAS  Google Scholar 

  • McNulty MJ, Hutabarat RH, Findlay JW, Devereux K, Knick VC, Harvey RJ, Molina L (2003) Pharmacokinetics and tissue distribution of the nonadecapeptide Moli1901 in rats and mice. Xenobiotica 33:197–210

    Article  PubMed  CAS  Google Scholar 

  • Minardo JD, Heger JJ, Miles WM, Zipes DP, Prystowsky EN (1988) Clinical characteristics of patients with ventricular fibrillation during antiarrhythmic drug therapy. N Engl J Med 319:257–262

    Article  PubMed  CAS  Google Scholar 

  • Navarro J, Chabot J, Sherrill K, Aneja R, Zahler SA, Racker E (1985) Interaction of duramycin with artificial and natural membranes. Biochemistry 24:4645–4650

    Article  PubMed  CAS  Google Scholar 

  • Nuss HB, Marban E (1994) Electrophysiological properties of neonatal mouse cardiac myocytes in primary culture. J Physiol 479.2:265–279

    Google Scholar 

  • Ratjen F, Doring G (2003) Cystic fibrosis. Lancet 361:681–689

    Article  PubMed  CAS  Google Scholar 

  • Reuter H (1979) Properties of two inward membrane currents in the heart. Annu Rev Physiol 41:413–424

    Article  PubMed  CAS  Google Scholar 

  • Roberts M, Hladky SB, Pickles RJ, Cuthbert AW (1991) Stimulation of sodium transport by duramycin in cultured human colonic epithelia. J Pharmacol Exp Ther 259:1050–1058

    PubMed  CAS  Google Scholar 

  • Rosen MR, Wit AL (1987) Arrhythmogenic actions of antiarrhythmic drugs. Am J Cardiol 59:10E–18E

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Kiyosue T, Arita M (1992) Inhibitory effects of palmitoylcarnitine and lysophosphatidylcholine on the sodium current of cardiac ventricular cells. Pflugers Arch 420:94–100

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Arita M, Kiyosue T (1993) Differential mechanism of block of palmitoyl lysophosphatidylcholine and of palmitoylcarnitine on inward rectifier K+ channels of guinea-pig ventricular myocytes. Cardiovasc Drugs Ther 7(Suppl 3):575–584

    Article  PubMed  Google Scholar 

  • Schlepper M (1989) Cardiodepressive effects of antiarrhythmic drugs. Eur Heart J 10(Suppl E):73–80

    PubMed  CAS  Google Scholar 

  • Shander GS, Undrovinas AI, Makielski JC (1996) Rapid onset of lysophosphatidylcholine-induced modification of whole cell cardiac sodium current kinetics. J Mol Cell Cardiol 28:743–753

    Article  PubMed  CAS  Google Scholar 

  • Sheth TR, Henderson RM, Hladky SB, Cuthbert AW (1992) Ion channel formation by duramycin. Biochim Biophys Acta 1107:179–185

    Article  PubMed  CAS  Google Scholar 

  • Stork D, Timin EN, Berjukow S, Huber C, Hohaus A, Auer M, Hering S (2007) State dependent dissociation of HERG channel inhibitors. Br J Pharmacol 151:1368–1376

    Article  PubMed  CAS  Google Scholar 

  • Tillman TS, Cascio M (2003) Effects of membrane lipids on ion channel structure and function. Cell Biochem Biophys 38:161–190

    Article  PubMed  CAS  Google Scholar 

  • Undrovinas AI, Fleidervish IA, Makielski JC (1992) Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 71:1231–1241

    PubMed  CAS  Google Scholar 

  • Vandenberg JI, Walker BD, Campbell TJ (2001) HERG K+ channels: friend and foe. Trends Pharmacol Sci 22:240–246

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Corr PB (1992) Influence of long-chain acylcarnitines on voltage-dependent calcium current in adult ventricular myocytes. Am J Physiol 263:H410–H417

    PubMed  CAS  Google Scholar 

  • Zebedin E, Sandtner W, Galler S, Szendroedi J, Just H, Todt H, Hilber K (2004) Fiber type conversion alters inactivation of voltage-dependent sodium currents in mouse C2C12 skeletal muscle cells. Am J Physiol Cell Physiol 287:C270–C280

    Article  PubMed  CAS  Google Scholar 

  • Zebedin E, Mille M, Speiser M, Zarrabi T, Sandtner W, Latzenhofer B, Todt H, Hilber K (2007) C2C12 Skeletal muscle cells adopt cardiac-like sodium current properties in a cardiac cell environment. Am J Physiol Heart Circ Physiol 292:H439–H450

    Article  PubMed  CAS  Google Scholar 

  • Zeitlin PL, Boyle MP, Guggino WB, Molina L (2004) A Phase I trial of intranasal Moli1901 for cystic fibrosis. Chest 125:143–149

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann N, Freund S, Fredenhagen A, Jung G (1993) Solution structures of the lantibiotics duramycin B and C. Eur J Biochem 216:419–428

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by a grant from AOP Austrian Orphan Pharmaceuticals AG; M.R. was supported by a Lise-Meitner fellowship M989-B09 of the FWF (Austrian Science Fund). We are grateful to Martina Molin for the excellent technical assistance; we thank Michael C. Sanguinetti (University of Utah) for kindly providing the plasmid-encoding hERG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karlheinz Hilber.

Additional information

Eva Zebedin, and Xaver Koenig contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zebedin, E., Koenig, X., Radenkovic, M. et al. Effects of duramycin on cardiac voltage-gated ion channels. Naunyn-Schmied Arch Pharmacol 377, 87–100 (2008). https://doi.org/10.1007/s00210-007-0248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0248-5

Keywords

Navigation