Skip to main content
Log in

Isobolographic analysis of interaction between drugs with nonparallel dose–response relationship curves: a practical application

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The objective of this study was to characterize the anticonvulsant and acute adverse-effect potentials of topiramate (TPM) and gabapentin (GBP)—two second-generation antiepileptic drugs administered alone and in combination in the maximal electroshock (MES)-induced seizures and chimney test in mice. The anticonvulsant and acute adverse effects of the combination of TPM with GBP at the fixed ratio of 1:1 were determined using the type I isobolographic analysis for nonparallel dose–response relationship curves (DRRCs). To ascertain any pharmacokinetic contribution to the observed interaction between TPM and GBP, total brain concentrations of both drugs were determined. The isobolographic analysis of interaction for TPM and GBP, whose DRRCs were not parallel in both MES and chimney tests, was accompanied with a presentation of all required calculations allowing the determination of lower and upper lines of additivity. The isobolographic analysis revealed that TPM combined with GBP at the fixed-ratio combination of 1:1 interacted supraadditively (synergistically) in terms of suppression of MES-induced seizures, and simultaneously, the combination produced additive interaction with respect to motor coordination impairment (adverse effects) in the chimney test. The evaluation of pharmacokinetic characteristics of interaction for the combination of TPM with GBP revealed that neither TPM nor GBP affected their total brain concentrations in experimental animals, and thus, the observed interaction in the MES test was pharmacodynamic in nature. In conclusion, the combination of TPM with GBP, because of supraadditivity in the MES test and additivity in terms of motor coordination impairment in the chimney test as well as lack of pharmacokinetic interactions between drugs, fulfilled the criterion of a favorable combination, worthy of recommendation in further clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AED:

antiepileptic drug

DRRC:

dose–response relationship curve

GBP:

gabapentin

MES:

maximal electroshock seizure test

TPM:

topiramate

References

  • Bartoszyk GD, Meyerson M, Reimann W, Satzinger G, von Hodenberg A (1986) Gabapentin. In: Meldrum BS, Porter RJ (eds) New anticonvulsant drugs. Libbey, London, pp 147–163

    Google Scholar 

  • Berenbaum MC (1989) What is synergy? Pharmacol Rev 41:93–141 (erratum published in 1989, Pharmacol Rev 41:422)

    PubMed  CAS  Google Scholar 

  • Boissier JR, Tardy J, Diverres JC (1960) Une nouvelle methode simple pour explorer l’action tranquilisante le test de la cheminee. Med Exp 3:81–84 (Basel)

    CAS  Google Scholar 

  • Borowicz KK, Swiader M, Luszczki J, Czuczwar SJ (2002) Effect of gabapentin on the anticonvulsant activity of antiepileptic drugs against electroconvulsions in mice—an isobolographic analysis. Epilepsia 43:956–963

    Article  PubMed  CAS  Google Scholar 

  • Dalby NO, Nielsen EB (1997) Comparison of the preclinical anticonvulsant profiles of tiagabine, lamotrigine, gabapentin and vigabatrin. Epilepsy Res 28:63–72

    Article  PubMed  CAS  Google Scholar 

  • Deckers CLP, Czuczwar SJ, Hekster YA, Keyser A, Kubova H, Meinardi H, Patsalos P, Renier WO, van Rijn CM (2000) Selection of antiepileptic drug polytherapy based on mechanism of action: the evidence reviewed. Epilepsia 41:1364–1374

    Article  PubMed  CAS  Google Scholar 

  • Grabovsky Y, Tallarida RJ (2004) Isobolographic analysis for combinations of a full and partial agonist: curved isoboles. J Pharmacol Exp Ther 310:981–986

    Article  PubMed  CAS  Google Scholar 

  • Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from response surface perspective. Pharmacol Rev 47:331–385

    PubMed  CAS  Google Scholar 

  • Leach JP (2000) Antiepileptic drugs: safety in numbers? Seizure 9:170–178

    Article  PubMed  CAS  Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  Google Scholar 

  • Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290

    PubMed  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2003) Isobolographic and subthreshold methods in the detection of interactions between oxcarbazepine and conventional antiepileptics—a comparative study. Epilepsy Res 56:27–42

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2004a) Preclinical profile of combinations of some second-generation antiepileptic drugs: an isobolographic analysis. Epilepsia 45:895–907

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2004b) Isobolographic profile of interactions between tiagabine and gabapentin: a preclinical study. Naunyn-Schmiedeberg’s Arch Pharmacol 369:434–446

    Article  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2006) Biphasic characteristic of interactions between stiripentol and carbamazepine in the mouse maximal electroshock-induced seizure model: a three-dimensional isobolographic analysis. Naunyn-Schmiedeberg’s Arch Pharmacol 374:51–64

    Article  CAS  Google Scholar 

  • Luszczki JJ, Swiader M, Parada-Turska J, Czuczwar SJ (2003a) Tiagabine synergistically interacts with gabapentin in the electroconvulsive threshold test in mice. Neuropsychopharmacology 28:1817–1830

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Borowicz KK, Swiader M, Czuczwar SJ (2003b) Interactions between oxcarbazepine and conventional antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 44:489–499

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar M, Kis J, Krysa J, Pasztelan I, Swiader M, Czuczwar SJ (2003c) Interactions of lamotrigine with topiramate and first-generation antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 44:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Andres MM, Czuczwar SJ (2005a) Synergistic interaction of gabapentin and oxcarbazepine in the mouse maximal electroshock seizure model—an isobolographic analysis. Eur J Pharmacol 515:54–61

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Ratnaraj N, Patsalos PN, Czuczwar SJ (2005b) Pharmacodynamic and pharmacokinetic interaction studies with loreclezole and felbamate, lamotrigine, topiramate and oxcarbazepine in the mouse maximal electroshock seizure model. Epilepsia 46:344–355

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Andres MM, Czuczwar P, Cioczek-Czuczwar A, Ratnaraj N, Patsalos PN, Czuczwar SJ (2006a) Pharmacodynamic and pharmacokinetic characterization of interactions between levetiracetam and numerous antiepileptic drugs in the mouse maximal electroshock seizure model: an isobolographic analysis. Epilepsia 47:10–20

    Article  PubMed  CAS  Google Scholar 

  • Luszczki JJ, Ratnaraj N, Patsalos PN, Czuczwar SJ (2006b) Isobolographic analysis of interactions between loreclezole and conventional antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Naunyn-Schmiedeberg’s Arch Pharmacol 373:169–181

    Article  CAS  Google Scholar 

  • Löscher W, Nolting B (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. IV. Protective indices. Epilepsy Res 9:1–10

    Article  PubMed  Google Scholar 

  • Löscher W, Wauquier A (1996) Use of animal models in developing guiding principles for polypharmacy in epilepsy. Epilepsy Res Suppl 11:61–65

    PubMed  Google Scholar 

  • Löscher W, Fassbender CP, Nolting B (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res 8:79–94

    Article  PubMed  Google Scholar 

  • Perucca E (1995) Pharmacological principles as a basis for polytherapy. Acta Neurol Scand Suppl 162:31–34

    PubMed  CAS  Google Scholar 

  • Porreca F, Jiang Q, Tallarida RJ (1990) Modulation of morphine antinociception by peripheral [Leu5]enkephalin: a synergistic interaction. Eur J Pharmacol 179:463–468

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D (1996) Modern management of epilepsy: Rational polytherapy. Bailliere’s Clin Neurol 5:757–763

    CAS  Google Scholar 

  • Shank RP, Gardocki JF, Vaught JL, Davis CB, Schupsky JJ, Raffa RB, Dodgson SJ, Nortey SO, Maryanoff BE (1994) Topiramate: preclinical evaluation of structurally novel anticonvulsant. Epilepsia 35:450–460

    Article  PubMed  CAS  Google Scholar 

  • Sills GJ, Butler E, Thompson GG, Brodie MJ (2004) Pharmacodynamic interaction studies with topiramate in the pentylenetetrazol and maximal electroshock seizure models. Seizure 13:287–295

    Article  PubMed  Google Scholar 

  • Stephen LJ, Brodie MJ (2002) Seizure-freedom on more than one antiepileptic drug. Seizure 11:349–351

    Article  PubMed  Google Scholar 

  • Tallarida RJ (2000) Drug synergism and dose-effect data analysis. CRC, Boca Raton, FL

    Google Scholar 

  • Tallarida RJ (2006) An overview of drug combination analysis with isobolograms. J Pharmacol Exp Ther 319:1–7

    Article  PubMed  CAS  Google Scholar 

  • Tallarida RJ (2007) Interactions between drugs and occupied receptors. Pharmacol Ther 113:197–209

    Article  PubMed  CAS  Google Scholar 

  • White HS, Woodhead JH, Wilcox KS, Stables JP, Kupferberg HJ, Wolf HH (2002) Discovery and preclinical development of antiepileptic drugs. In: Levy RH, Mattson RH, Meldrum BS, Perucca E (eds) Antiepileptic drugs, 5th edn. Williams & Wilkins, Philadelphia, pp 36–48

    Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to Prof. Ronald J. Tallarida (Temple University School of Medicine, Philadelphia, USA) for his stimulating hints and help during the preparation of the isobolograms. I would also like to thank to Mr. Wojciech Zgrajka (Institute of Agricultural Medicine, Lublin, Poland) for the skillful determination of the brain concentrations of GBP. This study was supported by a grant (DS 345/2003–2005) from the Medical University of Lublin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarogniew J. Luszczki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luszczki, J.J. Isobolographic analysis of interaction between drugs with nonparallel dose–response relationship curves: a practical application. Naunyn-Schmied Arch Pharmacol 375, 105–114 (2007). https://doi.org/10.1007/s00210-007-0144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0144-z

Keywords

Navigation