Skip to main content

Advertisement

Log in

In vivo occupancy of dopamine D2 receptors by antipsychotic drugs and novel compounds in the mouse striatum and olfactory tubercles

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Interaction with dopamine D2-like receptors plays a major role in the therapeutic effects of antipsychotic drugs. We examined in vivo dopamine D2 receptor occupancy of various established and potential antipsychotics in mouse striatum and olfactory tubercles 1 h after administration of the compound, using [3H]nemonapride as a ligand. All the compounds reduced in vivo binding of [3H]nemonapride in the striatum. When administered systemically, conventional antipsychotics, D2 antagonists, nemonapride (ID50: 0.034 mg/kg), eticlopride (0.047), haloperidol (0.11) and raclopride (0.11) potently inhibited [3H]nemonapride binding. The ‘atypical’ antipsychotics, risperidone (0.18), ziprasidone (0.38), aripiprazole (1.6), olanzapine (0.99), and clozapine (11.1) were less potent for occupying D2-like receptors. New compounds, displaying marked agonism at 5-HT1A receptors in addition to D2 receptor affinity, exhibited varying D2 receptor occupancy: bifeprunox (0.25), SLV313 (0.78), SSR181507 (1.6) and sarizotan (6.7). ID50 values for inhibition of [3H]nemonapride binding in the striatum correlated with those in the olfactory tubercles (r=0.95, P<0.0001). These values also correlated with previously-reported in vitro affinity of the compounds at rat D2 receptors (r=0.85, P=0.0001) and with inhibition of apomorphine-induced climbing in mice (r=0.79 P=0.0005). In contrast, there was no significant correlation between ID50 values herein and previously-reported ED50 values for catalepsy in mice. These data indicate that: (1) there is no difference in D2 receptor occupancy in limbic versus striatal regions between most classical and atypical or potential antipsychotics; and (2) high occupancy of D2 receptors can be dissociated from catalepsy, if the drugs also activate 5-HT1A receptors. Taken together, these data support the strategy of simultaneously targeting D2 receptor blockade and 5-HT1A receptor activation for new antipsychotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abi-Dargham A, Laruelle M (2005) Mechanisms of action of second generation antipsychotic drugs in schizophrenia: insights from brain imaging studies. Eur Psychiatry 20:15–27

    Article  PubMed  Google Scholar 

  • Arnt J, Skarsfeldt T (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18:63–101

    Article  PubMed  CAS  Google Scholar 

  • Assié M-B, Consul-Denjean N, Koek W, Newman-Tancredi A (2005) Differential in vivo inhibition of [3H]nemonapride binding by atypical antipsychotics in rat striatum, olfactory lobes, and frontal cortex. Pharmacology 75:63–68

    Article  PubMed  CAS  Google Scholar 

  • Bantick RA, Deakin JFW, Grasby PM (2001) The 5-HT1A receptor in schizophrenia: a promising target for novel atypical neuroleptics? J Psychopharmacol 15:37–46

    Article  PubMed  CAS  Google Scholar 

  • Bardin L, Kleven MS, Barret-Grevoz C, Depoortere R, Newman-Tancredi A (2006) Antipsychotic-like vs cataleptogenic actions in mice of novel antipsychotics having D2 antagonist and 5-HT1A agonist properties. Neuropsychopharmacology In Press

  • Bartoszyk GD, Van Amsterdam C, Greiner HE, Rautenberg W, Russ H, Seyfried CA (2004) Sarizotan, a serotonin 5-HT1A receptor agonist and dopamine receptor ligand. 1. Neurochemical profile. J Neural Transm 111:113–126

    Article  PubMed  CAS  Google Scholar 

  • Blier P, Ward NM (2003) Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry 53:193–203

    Article  PubMed  CAS  Google Scholar 

  • Bressan RA, Erlandsson K, Jones HM, Mulligan R, Flanagan RJ, Ell PJ, Pilowsky LS (2003) Is regionally selective D2/D3 dopamine occupancy sufficient for atypical antipsychotic effect? - An in vivo quantitative [123I]epidepride SPET study of amisulpride-treated patients. Am J Psychiatry 160:1413–1420

    Article  PubMed  Google Scholar 

  • Brevik A, Farver D (2003) Atypical antipsychotic induced mild hypothermia. S D J Med 56:67–70

    PubMed  Google Scholar 

  • Broekkamp CL, Oosterloo SK, Berendsen HH, van Delft AM (1988) Effect of metergoline, fenfluramine, and 8-OH-DPAT on catalepsy induced by haloperidol or morphine. Naunyn Schmiedebergs Arch Pharmacol 338:191–195

    Article  PubMed  CAS  Google Scholar 

  • Bruins Slot LA, De Vries L, Newman-Tancredi A, Cussac D (2006) Differential profile of antipsychotics at serotonin 5-HT1A and dopamine D2S receptors coupled to extracellular signal-regulated kinase. Eur J Pharmacol 534:63–70

    Article  PubMed  CAS  Google Scholar 

  • Burstein ES, Ma JN, Wong S, Gao Y, Pham E, Knapp AE, Nash NR, Olsson R, Davis RE, Hacksell U, Weiner DM, Brann MR (2005) Intrinsic Efficacy of Antipsychotics at Human D2, D3, and D4 Dopamine Receptors: Identification of the clozapine metabolite N-desmethylclozapine as a D2/D3 partial agonist. J Pharmacol Exp Ther 315:1278–1287

    Article  PubMed  CAS  Google Scholar 

  • Claustre Y, De Peretti D, Brun P, Gueudet C, Allouard N, Alonso R, Lourdelet J, Oblin A, Damoiseau G, Françon D, Suaud-Chagny MF, Steinberg R, Sevrin M, Schoemaker H, George P, Soubrié P, Scatton B (2003) SSR181507, a dopamine D2 receptor antagonist and 5-HT1A receptor agonist. I: Neurochemical and electrophysiological profile. Neuropsychopharmacology 28:2064–2076

    PubMed  CAS  Google Scholar 

  • Cosi C, Carilla-Durand E, Assié M-B, Ormière A-M, Maraval M, Leduc N, Newman-Tancredi A (2006) Partial agonist properties of the antipsychotics SSR181507, aropiprazole and bifeprunox ant dopamine D2 receptors: G protein activation and prolactin release. Eur J Pharmacol 535:135–144

    Article  PubMed  CAS  Google Scholar 

  • Den Boer JA, Korf J (2000) Dopamine receptor subtypes and schizophrenia: a clinical perspective. In: Ellenbroek BA, Cools AR (eds.) Atypical antipsychotics. Birkhäuser, Basel, pp 163–190

    Google Scholar 

  • Depoortere R, Boulay D, Perrault G, Bergis O, Decobert M, Françon D, Jung M, Simiand J, Soubrié P, Scatton B (2003) SSR181507, a dopamine D2 receptor antagonist and 5-HT1A receptor agonist. II: Behavioral profile predictive of an atypical antipsychotic activity. Neuropsychopharmacology 28:1889–1902

    PubMed  CAS  Google Scholar 

  • Eltayb A, Wadenberg MLG, Schilström B, Svensson TH (2005) Topiramate augments the antipsychotic-like effect and cortical dopamine output of raclopride. Naunyn Schmiedebergs Arch Pharmacol 372:195–202

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron Emission Tomographic Analysis of Central D1- Dopamine and D2-Dopamine Receptor Occupancy in Patients Treated with Classical Neuroleptics and Clozapine - Relation to Extrapyramidal Side Effects. Arch Gen Psychiatry 49:538–544

    PubMed  CAS  Google Scholar 

  • Gründer G, Carlsson A, Wong DF (2003) Mechanism of new antipsychotic medications: occupancy is not just antagonism. Arch Gen Psychiatry 60:974–977

    Article  PubMed  Google Scholar 

  • Hidaka K, Tada S, Matsumoto M, Ohmori J, Tasaki Y, Nomura T, Usuda S, Yamaguchi T (1996) In vitro pharmacological profile of YM-43611, a novel D2-like receptor antagonist with high affinity and selectivity for dopamine D3 and D4 receptors. Br J Pharmacol 117:1625–1632

    PubMed  CAS  Google Scholar 

  • Ichikawa J, Meltzer HY (1999) Relationship between dopaminergic and serotonergic neuronal activity in the frontal cortex and the action of typical and atypical antipsychotic drugs. Eur Arch Psychiat Clin Neuros 249:90–98

    Article  Google Scholar 

  • Invernizzi RW, Cervo L, Samanin R (1988) 8-Hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin1A receptor agonist, blocks haloperidol-induced catalepsy by an action on raphe nuclei medianus and dorsalis. Neuropharmacology 27:515–518

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Inami K, Sasaki T, Nozaki T, Senda M (1994) Characterization of [3H]nemonapride binding to mouse brain dopamine D2 receptors assessed in vivo and ex vivo for metabolic modeling in PET studies. J Neural Transm 97:119–133

    Article  CAS  Google Scholar 

  • Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharm Biol Psychiatry 27:1081–1090

    Article  CAS  Google Scholar 

  • Kapur S, Remington G, Zipursky RB, Wilson AA, Houle S (1995) The D2 dopamine receptor occupancy of risperidone and its relationship to extrapyramidal symptoms: a pet study. Life Sci 57:PL103–PL107

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky R, Jones C, Remington G, Houle S (2000) Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 157:514–520

    Article  PubMed  CAS  Google Scholar 

  • Kleven MS, Barret-Grevoz C, Bruins Slot LA, Newman-Tancredi A (2005) Novel antipsychotic agents with 5-HT1A agonist properties: Role of 5-HT1A receptor activation in attenuation of catalepsy induction in rats. Neuropharmacology 49:135–143

    Article  PubMed  CAS  Google Scholar 

  • Kobilka B (1992) Adrenergic receptors as models for G protein-coupled receptors. Annu Rev Neurosci 15:87–114

    Article  PubMed  CAS  Google Scholar 

  • Leriche L, Diaz J, Sokoloff P (2004) Dopamine and glutamate dysfunctions in schizophrenia: role of the dopamine D3 receptor. Neurotox Res 6:63–71

    Article  PubMed  CAS  Google Scholar 

  • McCreary AC, Glennon JC, Ashby CR, Meltzer HY, Li Z, Reinders JH, Hesselink MB, Long SK, Herremans AH, van Stuivenberg H, Feenstra RW, Kruse CG (2006) SLV313 (1-(2,3-Dihydro-Benzo[1,4]Dioxin-5-yl)-4- [5-(4-Fluoro-Phenyl)-Pyridin-3-ylmethyl]-Piperazine Monohydrochloride): A Novel Dopamine D2 Receptor Antagonist and 5-HT1A Receptor Agonist Potential Antipsychotic Drug. Neuropsychopharmacology (In press)

  • McMillen BA, Scott SM, Davanzo EA (1988) Reversal of neuroleptic-induced catalepsy by novel aryl-piperazine anxiolytic drugs. J Pharm Pharmacol 40:885–887

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors : their key role in drugs to treat schizophrenia. Prog Neuropsychopharm Biol Psychiatry 27:1159–1172

    Article  CAS  Google Scholar 

  • Millan MJ (2000) Improving the treatment of schizophrenia: Focus on serotonin (5-HT)1A receptors. J Pharmacol Exp Ther 295:853–861

    PubMed  CAS  Google Scholar 

  • Moss LE, Neppe VM, Drevets WC (1993) Buspirone in the treatment of tardive dyskinesia. J Clin Psychopharmacol 13:204–209

    Article  PubMed  CAS  Google Scholar 

  • Natesan S, Reckless GE, Nobrega JN, Fletcher PJ, Kapur S (2006) Dissociation between In vivo occupancy and functional antagonism of dopamine D2 receptors: comparing aripiprazole to other antipsychotics in animal models. Neuropsychopharmacology (In press)

  • Newman-Tancredi A, Assié M-B, Leduc N, Ormière A-M, Danty N, Cosi C (2005) Novel antipsychotics activate recombinant human and native rat serotonin 5-HT1A receptors: affinity, efficacy and potential implication for treatment of schizophrenia. Int J Neuropsychopharmacol 11:1–16

    Google Scholar 

  • Oerther S, Ahlenius S (2000) Atypical antipsychotics and dopamine D1 receptor agonism: An in vivo experimental study using core temperature measurements in the rat. J Pharmacol Exp Ther 292:731–736

    PubMed  CAS  Google Scholar 

  • Perrault G, Depoortere R, Morel E, Sanger DJ, Scatton B (1997) Psychopharmacological profile of amisulpride: An antipsychotic drug with presynaptic D2/D3 dopamine receptor antagonist activity and limbic selectivity. J Pharmacol Exp Ther 280:73–82

    PubMed  CAS  Google Scholar 

  • Pickar D, Su TP, Weinberger DR, Coppola R, Malhotra AK, Knable MB, Lee KS, Gorey J, Bartko JJ, Breier A, Hsiao J (1996) Individual variation in D2 dopamine receptor occupancy in clozapine-treated patients. Am J Psychiatry 153:1571–1578

    PubMed  CAS  Google Scholar 

  • Prinssen EPM, Kleven MS, Koek W (1998) The cataleptogenic effects of the neuroleptic nemonapride are attenuated by its 5-HT1A receptor agonist properties. Eur J Pharmacol 356:189–192

    Article  PubMed  CAS  Google Scholar 

  • Schoemaker H, Claustre Y, Fage D, Rouquier L, Chergui K, Curet O, Oblin A, Gonon F, Carter C, Bénavidès J, Scatton B (1997) Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. J Pharmacol Exp Ther 280:83–97

    PubMed  CAS  Google Scholar 

  • Schotte A, Janssen PFM, Gommeren W, Luyten WHML, Van Gompel P, Lesage AS, De Loore K, Leysen JE (1996) Risperidone compared with new and reference antipsychotic drugs: In vitro and in vivo receptor binding. Psychopharmacology 124:57–73

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Kapur S (1997) Clozapine occupies high levels of dopamine D2 receptors. Life Sci 60:PL207–PL216

    Article  CAS  Google Scholar 

  • Seeman P, Tallerico T (1999) Rapid release of antipsychotic drugs from dopamine D2 receptors: An explanation for low receptor occupancy and early clinical relapse upon withdrawal of clozapine or quetiapine. Am J Psychiatry 156:876–884

    PubMed  CAS  Google Scholar 

  • Seeman P, Guan HC, Van Tol HHM (1995) Schizophrenia: Elevation of dopamine D4-like sites, using [3H]nemonapride and [125I]epidepride. Eur J Pharmacol 286:R3–R5

    Article  PubMed  CAS  Google Scholar 

  • Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR, Roth BL, Mailman R (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff P, Martres MP, Giros B, Bouthenet ML, Schwartz JC (1992) The third dopamine receptor (D3) as a novel target for antipsychotics. Biochem Pharmacol 43:659–666

    Article  PubMed  CAS  Google Scholar 

  • Stenfors C, Ross SB (2001) Hypothermia reduces the rate of dissociation of specific ligands from dopamine-D2 and 5-hydroxytryptamine1A receptors in the mouse brain in vivo. Naunyn Schmiedebergs Arch Pharmacol 364:479–486

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Suzuki K, Sakamoto H, Yamaguchi N, Mori H, Shiba K, Yokogawa K (1995) Atypicality of several antipsychotics on the basis of in vivo dopamine-D2 and serotonin-5HT2 receptor occupancy. Neuropsychopharmacology 12:57–64

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Matsui M, Yamashita I, Nohara S, Kurachi M, Uehara T, Sumiyoshi S, Sumiyoshi C, Meltzer HY (2001) The effect of tandospirone, a serotonin1A agonist, on memory function in schizophrenia. Biol Psychiatry 49:861–868

    Article  PubMed  CAS  Google Scholar 

  • Urban JD, Vargas GA, von Zastrow M, Mailman RB (2006) Aripiprazole has Functionally Selective Actions at Dopamine D(2) Receptor-Mediated Signaling Pathways. Neuropsychopharmacology (In press)

  • Wadenberg MLG (1996) Serotonergic mechanisms in neuroleptic-induced catalepsy in the rat. Neurosci Biobehav Rev 20:325–339

    Article  PubMed  CAS  Google Scholar 

  • Wadenberg MLG, Ahlenius S (1991) Antipsychotic-like profile of combined treatment with raclopride and 8-OH-DPAT in the rat: enhancement of antipsychotic-like effects without catalepsy. J Neural Transm 83:43–53

    Article  CAS  Google Scholar 

  • Wadenberg MLG, Kapur S, Soliman A, Jones C, Vaccarino F (2000) Dopamine D2 receptor occupancy predicts catalepsy and the suppression of conditioned avoidance response behavior in rats. Psychopharmacology (Berl) 150:422–429

    Article  CAS  Google Scholar 

  • Wolf W (2003) DU-127090. Curr Opin Investig Drugs 4:72–76

    PubMed  CAS  Google Scholar 

  • Xiberas X, Martinot JL, Mallet L, Artiges E, Loc’h C, Mazière B, Paillère-Martinot ML (2001) Extrastriatal and striatal D2 dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry 179:503–508

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Sugita R, Higuchi H, Hishikawa Y (1998) Effect of tandospirone on tardive dyskinesia and parkinsonian symptoms. Eur Psychiatry 13:421–422

    Article  Google Scholar 

Download references

Acknowledgements

We thank Solvay Duphar for the gift of SLV313 sample, Dr. Pierre Sokoloff for helpful comments, and Valérie Faucillon and Virginie Archimbeaud for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Bernadette Assié.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assié, MB., Dominguez, H., Consul-Denjean, N. et al. In vivo occupancy of dopamine D2 receptors by antipsychotic drugs and novel compounds in the mouse striatum and olfactory tubercles. Naunyn-Schmied Arch Pharmacol 373, 441–450 (2006). https://doi.org/10.1007/s00210-006-0092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0092-z

Keywords

Navigation