Skip to main content

Advertisement

Log in

The effect of nicotine in combination with various dopaminergic drugs on nigrostriatal dopamine in rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

It is well established that nicotine activates brain dopaminergic systems and in addition has neuroprotective actions. Thus, nicotinic acetylcholine receptor (nAChR) agonists might be beneficial in the treatment of Parkinson’s disease, and it is important to study the interactions of nicotine with drugs affecting the nigrostriatal dopaminergic pathway. We used brain microdialysis to study the effects of nicotine on extracellular levels of dopamine (DA) and its metabolites in the rat dorsal striatum in combination with drugs inhibiting either DA uptake (nomifensine), catechol-O-methyltransferase (COMT; tolcapone), monoamine oxidase B (MAO-B; selegiline) or DA receptors (haloperidol). Nicotine (0.5 mg/kg, s.c.) modestly increased DA output, and this effect was antagonised by mecamylamine but not by hexamethonium. Nomifensine (3 mg/kg, i.p.) substantially further enhanced the nicotine-induced increase in DA output and nomifensine+nicotine also evoked a strong mecamylamine-sensitive ipsilateral rotational behaviour in 6-hydroxydopamine lesioned rats. Tolcapone (10 mg/kg, i.p.) did not alter DA output, but markedly decreased homovanillic acid (HVA) and increased 3,4-dihydroxyphenylacetic acid (DOPAC). Selegiline pretreatment (5×1 mg/kg, i.p.) significantly increased extracellular DA and decreased DOPAC and HVA. Haloperidol (0.1 mg/kg, s.c.) slightly increased DA output and more clearly DOPAC and HVA. Tolcapone, selegiline or haloperidol did not enhance the nicotine-induced DA output. These results indicate that the activation of nigrostriatal nAChRs induces a significant DA release in the striatum, which is potentiated by DA uptake inhibition but not by COMT, MAO-B or presynaptic DA receptor inhibition. Our findings therefore agree with the notion that the termination of the effect of DA in the synapse mainly occurs via neuronal reuptake. Thus, selective nAChR agonists, possibly in combination with a DA uptake inhibitor, might improve dopaminergic transmission in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allam MF, Campbell MJ, Hofman A, Del Castillo AS, Fernandez-Crehuet Navajas R (2004) Smoking and Parkinson’s disease: systematic review of prospective studies. Mov Disord 19:614–621

    PubMed  Google Scholar 

  • Arqueros L, Naquira D, Zunino E (1978) Nicotine-induced release of catecholamines from rat hippocampus and striatum. Biochem Pharmacol 27:2667–2674

    CAS  PubMed  Google Scholar 

  • Arroyo-Jimenez MM, Bourgeois JP, Marubio LM, Le Sourd AM, Ottersen OP, Rinvik E, Fairen A, Changeux JP (1999) Ultrastructural localization of the alpha4-subunit of the neuronal acetylcholine nicotinic receptor in the rat substantia nigra. J Neurosci 19:6475–6487

    CAS  PubMed  Google Scholar 

  • Azam L, Winzer-Serhan UH, Chen Y, Leslie FM (2002) Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs within midbrain dopamine neurons. J Comp Neurol 444:260–274

    CAS  PubMed  Google Scholar 

  • Balfour DJ, Fagerström KO (1996) Pharmacology of nicotine and its therapeutic use in smoking cessation and neurodegenerative disorders. Pharmacol Ther 72:51–81

    CAS  PubMed  Google Scholar 

  • Baron JA (1986) Cigarette smoking and Parkinson’s disease. Neurology 36:1490–1496

    CAS  PubMed  Google Scholar 

  • Benwell ME, Balfour DJ (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105:849–856

    CAS  PubMed  Google Scholar 

  • Brazell MP, Mitchell SN, Joseph MH, Gray JA (1990) Acute administration of nicotine increases the in vivo extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid and ascorbic acid preferentially in the nucleus accumbens of the rat: comparison with caudate-putamen. Neuropharmacology 29:1177–1185

    CAS  PubMed  Google Scholar 

  • Butcher SP, Fairbrother IS, Kelly JS, Arbuthnott GW (1990) Effects of selective monoamine oxidase inhibitors on the in vivo release and metabolism of dopamine in the rat striatum. J Neurochem 55:981–988

    CAS  PubMed  Google Scholar 

  • Butcher SP, Liptrot J, Aburthnott GW (1991) Characterisation of methylphenidate and nomifensine induced dopamine release in rat striatum using in vivo brain microdialysis. Neurosci Lett 122:245–248

    CAS  PubMed  Google Scholar 

  • Carboni E, Imperato A, Perezzani L, Di Chiara G (1989) Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience 28:653–661

    CAS  PubMed  Google Scholar 

  • Church WH, Justice JB Jr, Byrd LD (1987) Extracellular dopamine in rat striatum following uptake inhibition by cocaine, nomifensine and benztropine. Eur J Pharmacol 139:345–348

    CAS  PubMed  Google Scholar 

  • Clarke PB, Pert A (1985) Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Res 348:355–358

    CAS  PubMed  Google Scholar 

  • Clarke PB, Hommer DW, Pert A, Skirboll LR (1987) Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: neuroanatomical and electrophysiological evidence. Neuroscience 23:1011–1019

    CAS  PubMed  Google Scholar 

  • Clemens P, Baron JA, Coffey D, Reeves A (1995) The short-term effect of nicotine chewing gum in patients with Parkinson’s disease. Psychopharmacology 117:253–256

    CAS  PubMed  Google Scholar 

  • Court J, Clementi F (1995) Distribution of nicotinic subtypes in human brain. Alzheimer Dis Assoc Disord 9 [Suppl 2]:6–14

    Google Scholar 

  • Damsma G, Westerink BH, de Vries JB, Horn AS (1988) The effect of systemically applied cholinergic drugs on the striatal release of dopamine and its metabolites, as determined by automated brain dialysis in conscious rats. Neurosci Lett 89:349–354

    CAS  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    PubMed  Google Scholar 

  • Domino EF, Ni L, Zhang H (1999) Nicotine alone and in combination with L-DOPA methyl ester or the D(2) agonist N-0923 in MPTP-induced chronic hemiparkinsonian monkeys. Exp Neurol 158:414–421

    CAS  PubMed  Google Scholar 

  • Drew KL, O’Connor WT, Kehr J, Ungerstedt U (1990) Regional specific effects of clozapine and haloperidol on GABA and dopamine release in rat basal ganglia. Eur J Pharmacol 187:385–397

    CAS  PubMed  Google Scholar 

  • Ebersbach G, Stock M, Muller J, Wenning G, Wissel J, Poewe W (1999) Worsening of motor performance in patients with Parkinson’s disease following transdermal nicotine administration. Mov Disord 14:1011–1013

    CAS  PubMed  Google Scholar 

  • Fagerström KO, Pomerleau O, Giordani B, Stelson F (1994) Nicotine may relieve symptoms of Parkinson’s disease. Psychopharmacology 116:117–119

    PubMed  Google Scholar 

  • Ferger B, Kuschinsky K (1997) Biochemical studies support the assumption that dopamine plays a minor role in the EEG effects of nicotine. Psychopharmacology 129:192–196

    CAS  PubMed  Google Scholar 

  • Futami T, Takakusaki K, Kitai ST (1995) Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res 21:331–342

    CAS  PubMed  Google Scholar 

  • Gerasimov MR, Franceschi M, Volkow ND, Rice O, Schiffer WK, Dewey SL (2000) Synergistic interactions between nicotine and cocaine or methylphenidate depend on the dose of dopamine transporter inhibitor. Synapse 38:432–437

    CAS  PubMed  Google Scholar 

  • Giorguieff-Chesselet MF, Kemel ML, Wandscheer D, Glowinski J (1979) Regulation of dopamine release by presynaptic nicotinic receptors in rat striatal slices: effect of nicotine in a low concentration. Life Sci 25:1257–1262

    CAS  PubMed  Google Scholar 

  • Gorell JM, Rybicki BA, Johnson CC, Peterson EL (1999) Smoking and Parkinson’s disease: a dose-response relationship. Neurology 52:115–119

    CAS  PubMed  Google Scholar 

  • Grady SR, Marks MJ, Collins AC (1994) Desensitization of nicotine-stimulated [3H]dopamine release from mouse striatal synaptosomes. J Neurochem 62:1390–1398

    CAS  PubMed  Google Scholar 

  • Haikala H (1987) Use of a novel type of rotating disc electrode and a flow cell with laminar flow pattern for the electrochemical detection of biogenic monoamines and their metabolites after Sephadex gel chromatographic purification and high-performance liquid chromatographic isolation from rat brain. J Neurochem 49:1033–1041

    CAS  PubMed  Google Scholar 

  • Hoffmann I (1982) Pharmacology of nomifensine. Int Pharmacopsychiatry 17 [Suppl]:4–20

    CAS  PubMed  Google Scholar 

  • Huotari M, Gainetdinov R, Mannisto PT (1999) Microdialysis studies on the action of tolcapone on pharmacologically-elevated extracellular dopamine levels in conscious rats. Pharmacol Toxicol 85:233–238

    CAS  PubMed  Google Scholar 

  • Huotari M, Santha M, Lucas LR, Karayiorgou M, Gogos JA, Mannisto PT (2002) Effect of dopamine uptake inhibition on brain catecholamine levels and locomotion in catechol-O-methyltransferase-disrupted mice. J Pharmacol Exp Ther 303:1309–1316

    CAS  PubMed  Google Scholar 

  • Imperato A, Mulas A, Di Chiara G (1986) Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol 132:337–338

    CAS  PubMed  Google Scholar 

  • Janhunen S, Kaakkola S, Tuominen RK, Ahtee L (2001) Nicotine induces rotation in combination with nomifensine in unilaterally 6-hydroxydopamine lesioned rats. Parkinsonism Relat Disord 7 [Suppl 1]:559

    Google Scholar 

  • Kaakkola S (1980) Contralateral circling behaviour induced by intranigral injection of morphine and enkephalin analogue FK 33-824 in rats. Acta Pharmacol Toxicol 47:385–393

    CAS  Google Scholar 

  • Kaakkola S (2000) Clinical pharmacology, therapeutic use and potential of COMT inhibitors in Parkinson’s disease. Drugs 59:1233–1250

    CAS  PubMed  Google Scholar 

  • Kaakkola S, Wurtman RJ (1992) Effects of COMT inhibitors on striatal dopamine metabolism: a microdialysis study. Brain Res 587:241–249

    CAS  PubMed  Google Scholar 

  • Kaakkola S, Wurtman RJ (1993) Effects of catechol-O-methyltransferase inhibitors and L-3,4-dihydroxyphenylalanine with or without carbidopa on extracellular dopamine in rat striatum. J Neurochem 60:137–144

    CAS  PubMed  Google Scholar 

  • Kaakkola SK, Tuominen RK, Mielikäinen P, Paldanius P, Ahtee L (2000) Effects of nomifensine and tolcapone on nicotine-induced dopamine release in rat striatum. Soc Neurosci Abstr 26:900

    Google Scholar 

  • Kaiser S, Wonnacott S (2000) Alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [3H]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol 58:312–318

    CAS  PubMed  Google Scholar 

  • Kelton MC, Kahn HJ, Conrath CL, Newhouse PA (2000) The effects of nicotine on Parkinson’s disease. Brain Cogn 43:274–282

    CAS  PubMed  Google Scholar 

  • Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21:1452–1463

    CAS  PubMed  Google Scholar 

  • Kulak JM, Musachio JL, McIntosh JM, Quik M (2002) Declines in different β2* nicotinic receptor populations in monkey striatum after nigrostriatal damage. J Pharmacol Exp Ther 303:633–639

    CAS  PubMed  Google Scholar 

  • Lamensdorf I, Youdim MB, Finberg JP (1996) Effect of long-term treatment with selective monoamine oxidase A and B inhibitors on dopamine release from rat striatum in vivo. J Neurochem 67:1532–1539

    CAS  PubMed  Google Scholar 

  • Lamensdorf I, Porat S, Simantov R, Finberg JP (1999) Effect of low-dose treatment with selegiline on dopamine transporter (DAT) expression and amphetamine-induced dopamine release in vivo. Br J Pharmacol 126:997–1002

    CAS  PubMed  Google Scholar 

  • Marks MJ, Grady SR, Collins AC (1993) Downregulation of nicotinic receptor function after chronic nicotine infusion. J Pharmacol Exp Ther 266:1268–1276

    CAS  PubMed  Google Scholar 

  • Marshall DL, Redfern PH, Wonnacott S (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 68:1511–1519

    CAS  PubMed  Google Scholar 

  • Marshall J, Schnieden H (1966) Effect of adrenaline, noradrenaline, atropine, and nicotine on some types of human tremor. J Neurol Neurosurg Psychiatry 29:214–218

    CAS  PubMed  Google Scholar 

  • Menzaghi F, Whelan KT, Risbrough VB, Rao TS, Lloyd GK (1997) Interactions between a novel cholinergic ion channel agonist, SIB-1765F and L-DOPA in the reserpine model of Parkinson’s disease in rats. J Pharmacol Exp Ther 280:393–401

    CAS  PubMed  Google Scholar 

  • Mihailescu S, Drucker-Colin R (2000) Nicotine, brain nicotinic receptors, and neuropsychiatric disorders. Arch Med Res 31:131–144

    CAS  PubMed  Google Scholar 

  • Morens DM, Grandinetti A, Reed D, White LR, Ross GW (1995) Cigarette smoking and protection from Parkinson’s disease: false association or etiologic clue? Neurology 45:1041–1051

    CAS  PubMed  Google Scholar 

  • Nakachi N, Kiuchi Y, Inagaki M, Inazu M, Yamazaki Y, Oguchi K (1995) Effects of various dopamine uptake inhibitors on striatal extracellular dopamine levels and behaviours in rats. Eur J Pharmacol 281:195–203

    CAS  PubMed  Google Scholar 

  • O’Connor WT, Drew KL, Ungerstedt U (1995) Differential cholinergic regulation of dopamine release in the dorsal and ventral neostriatum of the rat: an in vivo microdialysis study. J Neurosci 15:8353–8361

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, vol 2. Academic, New York

    Google Scholar 

  • Pietilä K, Laakso I, Ahtee L (1995) Chronic oral nicotine administration affects the circadian rhythm of dopamine and 5-hydroxytryptamine metabolism in the striata of mice. Naunyn-Schmiedebergs Arch Pharmacol 353:110–115

    PubMed  Google Scholar 

  • Pietilä K, Salminen O, Leikola-Pelho T, Ahtee L (1996) Tolerance to nicotine’s effects on striatal dopamine metabolism in nicotine-withdrawn mice. Eur J Pharmacol 318:17–22

    PubMed  Google Scholar 

  • Quik M (2004) Smoking, nicotine and Parkinson’s disease. Trends Neurosci 27:561–568

    CAS  PubMed  Google Scholar 

  • Quik M, Kulak JA (2002) Nicotine and nicotinic receptors; relevance to Parkinson’s disease. Neurotoxicology 23:581–594

    CAS  PubMed  Google Scholar 

  • Quik M, Polonskaya Y, Gillespie A, Lloyd GK, Langston JW (2000) Differential alterations in nicotinic receptor alpha6 and beta3 subunit messenger RNAs in monkey substantia nigra after nigrostriatal degeneration. Neuroscience 100:63–72

    CAS  PubMed  Google Scholar 

  • Quik M, Polonskaya Y, McIntosh JM, Kulak JM (2002) Differential nicotinic receptor expression in monkey basal ganglia: effects of nigrostriatal damage. Neuroscience 112:619–630

    CAS  PubMed  Google Scholar 

  • Quik M, Sum JD, Whiteaker P, McCallum SE, Marks MJ, Musachio J, McIntosh JM, Collins AC, Grady SR (2003) Differential declines in striatal nicotinic receptor subtype function after nigrostriatal damage in mice. Mol Pharmacol 63:1169–1179

    CAS  PubMed  Google Scholar 

  • Raevskii KS, Gainetdinov RR, Budygin EA, Mannisto P, Wightman M (2002) Dopaminergic transmission in the rat striatum in vivo in conditions of pharmacological modulation. Neurosci Behav Physiol 32:183–188

    CAS  PubMed  Google Scholar 

  • Rapier C, Lunt GG, Wonnacott S (1990) Nicotinic modulation of [3H]dopamine release from striatal synaptosomes: pharmacological characterisation. J Neurochem 54:937–945

    CAS  PubMed  Google Scholar 

  • Rowell PP (1995) Nanomolar concentrations of nicotine increase the release of [3H]dopamine from rat striatal synaptosomes. Neurosci Lett 189:171–175

    CAS  PubMed  Google Scholar 

  • Rusted JM, Newhouse PA, Levin ED (2000) Nicotinic treatment for degenerative neuropsychiatric disorders such as Alzheimer’s disease and Parkinson’s disease. Behav Brain Res 113:121–129

    CAS  PubMed  Google Scholar 

  • Sacaan AI, Menzaghi F, Dunlop JL, Correa LD, Whelan KT, Lloyd GK (1996) Epibatidine: a nicotinic acetylcholine receptor agonist releases monoaminergic neurotransmitters: in vitro and in vivo evidence in rats. J Pharmacol Exp Ther 276:509–515

    CAS  PubMed  Google Scholar 

  • Sakurai Y, Takano Y, Kohjimoto Y, Honda K, Kamiya HO (1982) Enhancement of [3H]dopamine release and its [3H]metabolites in rat striatum by nicotinic drugs. Brain Res 242:99–106

    CAS  PubMed  Google Scholar 

  • Salminen O, Murphy KL, McIntosh JM, Drago J, Marks MJ, Collins AC, Grady SR (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol Pharmacol 65:1526–1535

    CAS  PubMed  Google Scholar 

  • Schiffer WK, Azmoodeh M, Gerasimov M, Volkow ND, Fowler JS, Dewey SL (2003) Selegiline potentiates cocaine-induced increases in rodent nucleus accumbens dopamine. Synapse 48:35–38

    CAS  PubMed  Google Scholar 

  • Schneider JS, Pope-Coleman A, Van Velson M, Menzaghi F, Lloyd GK (1998) Effects of SIB-1508Y, a novel neuronal nicotinic acetylcholine receptor agonist, on motor behavior in parkinsonian monkeys. Mov Disord 13:637–642

    CAS  PubMed  Google Scholar 

  • Seppä T, Ahtee L (2000) Comparison of the effects of epibatidine and nicotine on the output of dopamine in the dorsal and ventral striatum of freely-moving rats. Naunyn-Schmiedebergs Arch Pharmacol 362:444–447

    PubMed  Google Scholar 

  • Seppä T, Ruotsalainen M, Laakso I, Tuominen R, Ahtee L (2000) Effect of acute nicotine administration on striatal dopamine output and metabolism in rats kept at different ambient temperatures. Br J Pharmacol 130:1147–1155

    PubMed  Google Scholar 

  • Serova L, Sabban EL (2002) Involvement of alpha 7 nicotinic acetylcholine receptors in gene expression of dopamine biosynthetic enzymes in rat brain. J Pharmacol Exp Ther 303:896–903

    CAS  PubMed  Google Scholar 

  • Sorenson EM, Shiroyama T, Kitai ST (1998) Postsynaptic nicotinic receptors on dopaminergic neurons in the substantia nigra pars compacta of the rat. Neuroscience 87:659–673

    CAS  PubMed  Google Scholar 

  • Teng L, Crooks PA, Buxton ST, Dwoskin LP (1997) Nicotinic-receptor mediation of S(-)nornicotine-evoked -3H-overflow from rat striatal slices preloaded with -3H-dopamine. J Pharmacol Exp Ther 283:778–787

    CAS  PubMed  Google Scholar 

  • Toth E, Sershen H, Hashim A, Vizi ES, Lajtha A (1992) Effect of nicotine on extracellular levels of neurotransmitters assessed by microdialysis in various brain regions: role of glutamic acid. Neurochem Res 17:265–271

    CAS  PubMed  Google Scholar 

  • Vernier JM, Holsenback H, Cosford ND, Whitten JP, Menzaghi F, Reid R, Rao TS, Sacaan AI, Lloyd GK, Suto CM, Chavez-Noriega LE, Washburn MS, Urrutia A, McDonald IA (1998) Conformationally restricted analogues of nicotine and anabasine. Bioorg Med Chem Lett 8:2173–2178

    CAS  PubMed  Google Scholar 

  • Vieregge A, Sieberer M, Jacobs H, Hagenah JM, Vieregge P (2001) Transdermal nicotine in PD: a randomized, double-blind, placebo-controlled study. Neurology 57:1032–1035

    CAS  PubMed  Google Scholar 

  • Villafane G, Degos J-D, Lagrue G, Cesaro P (2001) Long-term nicotine treatment in Parkinson’s disease: report of a case. Parkinsonism Relat Disord 7 [Suppl 1]:S73

    Google Scholar 

  • Westerink BH, de Vries JB (1989) On the mechanism of neuroleptic induced increase in striatal dopamine release: brain dialysis provides direct evidence for mediation by autoreceptors localized on nerve terminals. Neurosci Lett 99:197–202

    CAS  PubMed  Google Scholar 

  • Westfall TC (1974) Effect of nicotine and other drugs on the release of 3H-norepinephrine and 3H-dopamine from rat brain slices. Neuropharmacology 13:693–700

    CAS  PubMed  Google Scholar 

  • Whiteaker P, Garcha HS, Wonnacott S, Stolerman IP (1995) Locomotor activation and dopamine release produced by nicotine and isoarecolone in rats. Br J Pharmacol 116:2097–2105

    CAS  PubMed  Google Scholar 

  • Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92–98

    CAS  PubMed  Google Scholar 

  • Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW (2000) Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. Eur J Pharmacol 393:51–58

    CAS  PubMed  Google Scholar 

  • Wu WR, Zhu ZT, Zhu XZ (2000) Differential effects of L-deprenyl on MPP+- and MPTP-induced dopamine overflow in microdialysates of striatum and nucleus accumbens. Life Sci 67:241–250

    CAS  PubMed  Google Scholar 

  • Yahr MD, Mendoza MR, Moros D, Bergmann KJ (1983) Treatment of Parkinson’s disease in early and late phases. Use of pharmacological agents with special reference to deprenyl (selegiline). Acta Neurol Scand Suppl 95:95–102

    CAS  PubMed  Google Scholar 

  • Zdonczyk D, Royse V, Koller WC (1988) Nicotine and tremor. Clin Neuropharmacol 11:282–286

    CAS  PubMed  Google Scholar 

  • Zhou FM, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4:1224–1229

    CAS  PubMed  Google Scholar 

  • Zoli M, Moretti M, Zanardi A, McIntosh JM, Clementi F, Gotti C (2002) Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci 22:8785–8789

    CAS  PubMed  Google Scholar 

  • Zürcher G, Dingemanse J, Da Prada M (1993) Potent COMT inhibition by Ro 40-7592 in the periphery and in the brain. Preclinical and clinical findings. Adv Neurol 60:641–647

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Helsinki University Central Hospital, the Sigrid Jusélius Foundation and the University of Helsinki’s Research Funds. The excellent technical assistance of Ms. Marjo Vaha is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liisa Ahtee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janhunen, S., Mielikäinen, P., Paldánius, P. et al. The effect of nicotine in combination with various dopaminergic drugs on nigrostriatal dopamine in rats. Naunyn Schmied Arch Pharmacol 371, 480–491 (2005). https://doi.org/10.1007/s00210-005-1066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-005-1066-2

Keywords

Navigation