Skip to main content

Advertisement

Log in

On the parabolic Harnack inequality for non-local diffusion equations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We settle the open question concerning the Harnack inequality for globally positive solutions to non-local in time diffusion equations by constructing a counter-example for dimensions \(d\ge \beta \), where \(\beta \in (0,2]\) is the order of the equation with respect to the spatial variable. The equation can be non-local both in time and in space but for the counter-example it is important that the equation has a fractional time derivative. In this case, the fundamental solution is singular at the origin for all times \(t>0\) in dimensions \(d\ge \beta \). This underlines the markedly different behavior of time-fractional diffusion compared to the purely space-fractional case, where a local Harnack inequality is known. The key observation is that the memory strongly affects the estimates. In particular, if the initial data \(u_0 \in L^q_{loc}\) for q larger than the critical value \(\tfrac{d}{\beta }\) of the elliptic operator \((-\Delta )^{\beta /2}\), a non-local version of the Harnack inequality is still valid as we show. We also observe the critical dimension phenomenon already known from other contexts: the diffusion behavior is substantially different in higher dimensions than \(d=1\) provided \(\beta >1\), since we prove that the local Harnack inequality holds if \(d<\beta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow, M.T., Bass, R.F., Chen, Z.-Q., Kassmann, M.: Non-local dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361(4), 1963–1999 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Bass, R.F., Levin, D.A.: Transition probabilities for symmetric jump processes. Trans. Am. Math. Soc. 354(7), 2933–2953 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Bonforte, M., Sire, Y., Vázquez, J.L.: Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bonforte, M.V., Juan, L.: A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218(1), 317–362 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62(5), 597–638 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L., Silvestre, L.: Hölder regularity for generalized master equations with rough kernels. In: Advances in analysis: the legacy of Elias M Stein, vol. 40, pp. 63–83. Princeton University Press, Princeton, NJ (2014)

    MATH  Google Scholar 

  8. Caputo, M.: Diffusion of fluids in porous media with memory. Geothermics 28(1), 113–130 (1999)

    Google Scholar 

  9. Chang-Lara, H.A., Dávila, G.: Hölder estimates for non-local parabolic equations with critical drift. J. Differ. Equ. 260(5), 4237–4284 (2016)

    MATH  Google Scholar 

  10. Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for stable-like processes on \(d\)-sets. Stoch. Process Appl. 108(1), 27–62 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Eidelman, S.D., Kochubei, A.N.: Cauchy problem for fractional diffusion equations. J. Differ. Equ. 199(2), 211–255 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G., Bateman, H.: Higher transcendental functions, vol. 1. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  13. Grafakos, L.: Classical and modern Fourier analysis. Pearson Education Inc, Upper Saddle River (2004)

    MATH  Google Scholar 

  14. Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E 74, 031116 (2006)

    MathSciNet  Google Scholar 

  15. Jakubowski, V.G.: Nonlinear elliptic-parabolic integro-differential equations with \(L^1\)-data: existence, uniqueness, asymptotics. PhD thesis, Universität Duisburg-Essen, Fakultät für Mathematik (2002)

  16. Jia, J., Peng, J., Yang, J.: Harnack’s inequality for a space-time fractional diffusion equation and applications to an inverse source problem. J. Differ. Equ. 262(8), 4415–4450 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Kassmann, M.: A new formulation of Harnack’s inequality for nonlocal operators. C. R. Math. Acad. Sci. Paris 349(11–12), 637–640 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Kemppainen, J., Siljander, J., Vergara, V., Zacher, R.: Decay estimates for time-fractional and other non-local in time subdiffusion equations in \({\mathbb{R}}^d\). Math. Ann. 366(3–4), 941–979 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Kemppainen, J., Siljander, J., Zacher, R.: Representation of solutions and large-time behavior for fully nonlocal diffusion equations. J. Differ. Equ. 263(1), 149–201 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Kilbas, A.A., Saigo, M.: H-Transforms. Theory and Applications, vol. 9 of Analytical Methods and Special Functions. Charman and Hall/CRC, Boca Raton, Florida (2004)

  21. Kim, K.-H., Lim, S.: Asymptotic behaviors of fundamental solution and its derivatives related to space-time fractional differential equations. J. Korean Math. Soc. 53(4), 929–967 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Kim, Y.-C., Lee, K.-A.: Regularity results for fully nonlinear parabolic integro-differential operators. Math. Ann. 357(4), 1541–1576 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Meerschaert, M.M., Alla, S.: Stochastic Models for Fractional Calculus. In: De Gruyter Studies in Mathematics, vol. 43. Walter de Gruyter GmbH & Co., Berlin (2012)

    Google Scholar 

  24. Meerschaert, M.M., Benson, D.A., Scheffler, H.-P., Becker-Kern, P.: Governing equations and solutions of anomalous random walk limits. Phys. Rev. E 66, 060102 (2002)

    Google Scholar 

  25. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Prüss, J.: Evolutionary integral equations and applications, reprint of the 1993 edition. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel (2012)

    Google Scholar 

  27. Zacher, R.: Maximal regularity of type \(L_p\) for abstract parabolic Volterra equations. J. Evolut. Equ. 5(1), 79–103 (2005)

    MATH  Google Scholar 

  28. Zacher, R.: The Harnack inequality for the Riemann–Liouville fractional derivation operator. Math. Inequal. Appl. 14(1), 35–43 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Zacher, R.: A weak Harnack inequality for fractional evolution equations with discontinuous coefficients. Ann. Sci. Norm. Super Pisa Cl. Sci. 12(4), 903–940 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J. S. was supported by the Academy of Finland Grant 259363 and a Väisälä foundation travel Grant. R. Z. was supported by a research grant of the German Research Foundation (DFG), GZ Za 547/4-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rico Zacher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dier, D., Kemppainen, J., Siljander, J. et al. On the parabolic Harnack inequality for non-local diffusion equations. Math. Z. 295, 1751–1769 (2020). https://doi.org/10.1007/s00209-019-02421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02421-7

Keywords

Mathematics Subject Classification

Navigation