Skip to main content

Advertisement

Log in

Multi-dimensional metric approximation by primitive points

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider diophantine inequalities of the form \(| {\Theta }\mathbf{q}+ \mathbf{p}- \mathbf{y}|\le \psi (| \mathbf{q}|)\), with \(\Theta \in \mathrm{Mat}_{n,m}({\mathbb R})\), \(\mathbf{y}\in {\mathbb R}^n\), where \(m,n\in {\mathbb N}\), and \(\psi \) is a function on \({\mathbb N}\) with positive real values, seeking integral solutions \(\mathbf{q}\in {\mathbb Z}^m\) and \(\mathbf{p}\in {\mathbb Z}^n\) for which the restriction of the vector \((\mathbf{q}, \mathbf{p})^t\) to the components of a given partition \(\pi \) are primitive integer points. In this setting, we establish metrical statements in the style of the Khintchine–Groshev Theorem. Similar solutions are considered for the doubly metrical inequality \(| {\Theta }\mathbf{q}+\Phi \mathbf{p}- \mathbf{y}|\le \psi (| \mathbf{q}|)\), with \(\Phi \in \mathrm{Mat}_{n,n}({\mathbb R})\) (other notations as before). The results involve the conditions that \(x \mapsto x^{m-1}\psi (x)^n\) be non-increasing, and that the components of \(\pi \) have at least \(n+1\) elements each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bekka, M.B., Mayer, M.: Ergodic theory and topological dynamics of group actions on homogeneous spaces. London Mathematical Society Lecture Note Series, 269. Cambridge University Press, Cambridge (2000) x+200 pp

  2. Beresnevich, V., Velani, S.: A note on zero-one laws in Diophantine approximation. Acta Arith. 133, 363–374 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beresnevich, V., Velani, S.: Classical metric diophantine approximation revisited. In: the Khintchine–Groshev theorem. International Mathematics Research Notices IMRN (2010), pp. 69–86

  4. Bugeaud, Y.: Approximation by Algebraic Numbers, Cambridge Tacts in Mathematics, vol. 160. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  5. Bugeaud, Y., Laurent, M.: Exponents of inhomogeneous Diophantine approximation. Mosc. Math. J. 5, 747–766 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Cassels, J.W.S.: An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 99. Cambridge University Press, Cambridge (1957)

    Google Scholar 

  7. Cassels, J.W.S.: Some metrical theorems in Diophantine approximation I. Proc. Camb. Philos. Soc. 46, 209–218 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gallagher, P.X.: Metric simultaneous diophantine approximation II. Mathematika 12, 123–127 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  9. Groshev, A.: Un théorème sur les systèmes de formes linéaires. Dokl. Akad. Nauk SSSR 19, 151–152 (1938)

    Google Scholar 

  10. Harman, G.: Metric Number Theory, London Mathematical Society Monographs, vol. 18. Oxford University Press, Oxford (1998)

    Google Scholar 

  11. Kleinbock, D.Y., Margulis, G.A.: Logarithmic laws for flows on homogeneous spaces. Invent. Math. 138, 451–494 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lang, S.: Fundamentals of Diophantine Geometry. Springer, New York (1983)

    Book  MATH  Google Scholar 

  13. Laurent, M., Nogueira, A.: Inhomogeneous approximation with coprime integers and lattice orbits. Acta Arith. 154(4), 413–427 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Marichal, J.-L., Mossinghoff, M.: Slices, slabs, and sections of the Unit hypercube. J. Anal. Comb. 3 (2008, online)

  15. Moore, C.C.: Ergodicity of flows on homogeneous spaces. Am. J. Math. 88, 154–178 (1966)

    Article  MATH  Google Scholar 

  16. Schmidt, W.M.: A metrical theorem in diophantine approximation. Can. J. Math. 12, 619–631 (1960)

    Article  MATH  Google Scholar 

  17. Schmidt, W.M.: Metrical theorem on fractional parts of sequences. Trans. Am. Math. Soc. 110, 493–518 (1964)

    Article  MATH  Google Scholar 

  18. Schmidt, W.M.: Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, (1980)

  19. Sprindz̆uck, V.G.: Metric Theory of Diophantine Approximations. V. H. Winston & Sons, Washington (1979)

    Google Scholar 

  20. Vaaler, J.D.: On the metric theory of Diophantine approximation. Pac. J. Math. 76, 527–539 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  21. Vaaler, J.D.: A geometric inequality with applications to linear forms. Pac. J. Math. 83, 543–553 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

S. G. Dani and A. Nogueira would like to thank, respectively, the Institut de Mathématiques de Marseille, Aix-Marseille Université, France, and the Laboratoire Fibonacci (CNRS-UMI 3483), Italy, for hospitality while this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Laurent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dani, S.G., Laurent, M. & Nogueira, A. Multi-dimensional metric approximation by primitive points. Math. Z. 279, 1081–1101 (2015). https://doi.org/10.1007/s00209-014-1404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-014-1404-5

Keywords

Mathematics Subject Classification

Navigation