Skip to main content
Log in

Porosity and unique completion in strictly convex spaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We are concerned in this paper with topological and stochastic properties of the family \({\mathcal G}\) of all closed convex sets with a unique extension to a complete set. With the help of a strengthened version of a lemma by Groemer we show that, in Minkowski spaces with a strictly convex norm, \({\mathcal G}\) is lower porous. This improves a previous result from Groemer (Geom. Dedicata 20:319–334, 1986) where, in the same context, \({\mathcal G}\) was proved to be nowhere dense. In contrast to this fact we show that, in these spaces, there is a stochastic construction procedure which provides a complete set with probability one. This generalizes an earlier result of Bavaud (Trans. Amer. Math. Soc. 333(1):315–324, 1992) proved for the particular case of the Euclidean plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amir D.: On Jung’s constant and related constants in normed linear spaces. Pacific J. Math. 118, 1–15 (1985)

    MATH  MathSciNet  Google Scholar 

  2. Baronti M., Papini P.L.: Diameters, centers and diametrically maximal sets. Rend Circolo Mat Palermo Suppl. (II) 38, 11–24 (1995)

    MathSciNet  Google Scholar 

  3. Bavaud F.: Adjoint transform, overconvexity and sets of constant width. Trans. Am. Math. Soc. 333(1), 315–324 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boltyanskiĭ V.G.: The partitioning of plane figures into parts of smaller diameter (Russian). Colloq. Math. 21, 253–263 (1970)

    MathSciNet  Google Scholar 

  5. Chakerian G.D., Groemer H.: Convex bodies of constant width. In: Gruber, P.M., Wills, J. (eds) Convexity and its Applications, pp. 49–96. Birkhäuser, Basel (1983)

    Google Scholar 

  6. Eggleston H.G.: Sets of constant width in finite dimensional Banach spaces. Israel J. Math. 3, 163–172 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goebel K., Kirk W.A.: Topics in metric fixed point theory. Cambridge Studies in Advances Mathematics, vol. 28. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  8. Groemer H.: On complete convex bodies. Geom. Dedicata 20, 319–334 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gruber P.M.: Baire categories in convexity. In: Gruber, P.M., Wills, J.M. (eds) Handbook of Convex Geometry., pp. 1327–1346. North-Holland, Amsterdam (1993)

    Google Scholar 

  10. Gruber P.M.: Dimension and structure of typical compact sets, continua and curves. Monatsh Math. 108(2–3), 149–164 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gruber P.M., Zamfirescu T.: Generic properties of compact starshaped sets. Proc. Am. Math. Soc. 108(1), 207–214 (1990)

    MATH  MathSciNet  Google Scholar 

  12. Heil, E., Martini, H.: Special convex bodies. In: Gruber, P., Wills, J. (eds.) Handbook of Convex Geometry, vol. A, pp. 347–385. North-Holland, Amsterdam (1993)

  13. Jiménez Sevilla M., Moreno J.P.: A note on porosity and the Mazur intersection property. Mathematika 47, 267–272 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Khamsi M.A., Kirk W.A.: An introduction to metric spaces and fixed point theory. Pure and Applied Mathematics (New York). Wiley-Interscience, New York (2001)

    Google Scholar 

  15. Kołodziejczyk K.: Borsuk covering and planar sets with unique completion. Discrete Math. 122, 235–244 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kirk W.A.: Nonexpansive mappings and the weak closure of sequences of iterates. Duke Math. J. 36, 639–645 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lindenstrauss, J., Preiss, D., Tišer, J.: How small are σ-porous sets and why are we interested in it? Real Anal. Exchange 2007, 31st Summer Symposium Conference, pp. 105–119

  18. Matoušková E., Reich S., Zaslavski A.J.: Genericity in nonexpansive mapping theory. Advanced courses of Mathematical Analysis I, pp. 81–98. World Sci Publ, Hackensack, NJ (2004)

    Google Scholar 

  19. Martini H., Swanepoel K.J.: The geometry of Minkowski spaces—a survey, Part II. Expos. Math. 22(2), 93–144 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Meissner, E.: Über Punktmengen konstanter Breite. Vierteljahresschr. naturforsch. Ges Zürich 56 (1911), 42–50. Jbuch. 42, p. 91

  21. Mera M.E., Morán M., Preiss D., Zají L.: Porosity, σ-porosity and measures. Nonlinearity 16, 247–255 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Moreno J.P.: Porosity and diametrically maximal sets in C(K). Monatsh Math. 152, 255–263 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Moreno J.P., Papini P.L., Phelps R.R.: Diametrically maximal and constant width sets in Banach spaces. Can. J. Math. 58(4), 820–842 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Naszódi, M., Visy, B.: Sets with a unique extension to a set of constant width. In: Bezdek, A. (ed.) Discrete Geometry, Monogr. Textbooks Pure Appl. Math., vol. 253, pp. 373–380. Dekker, New York (2003)

  25. Phelps, R.R.: Convex functions, monotone operators and differentiability. Lecture Notes in Mathematics, vol. 1364. Springer Verlag (1989); rev ed., 1993

  26. Reich S., Zaslavski A.J.: A porosity result in best approximation theory. J. Nonlinear Convex Anal. 4(1), 165–173 (2003)

    MATH  MathSciNet  Google Scholar 

  27. Reich S., Zaslavski A.J.: Well-posedness and porosity in best approximation problems. Topol. Methods Nonlinear Anal. 18(2), 395–408 (2001)

    MATH  MathSciNet  Google Scholar 

  28. Zajíček, L.: Porosity and σ-porosity. Real Analysis Exchange 13, 314–350 (1987–88)

    Google Scholar 

  29. Zamfirescu T.: How many sets are porous?. Proc. Am. Math. Soc. 100(2), 383–387 (1987)

    MATH  MathSciNet  Google Scholar 

  30. Zamfirescu, T.: Porosity in convexity. Real Analysis Exchange 15, 424–436 (1989–90)

    Google Scholar 

  31. Zamfirescu T.: On the cut locus in Alexandrov spaces and applications to convex surfaces. Pacific J. Math. 217(2), 375–386 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zong C.: Strange phenomena in convex and discrete geometry. Universitext, Springer, New York (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Moreno.

Additional information

Partially supported by MTM 2009-07848.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, J.P. Porosity and unique completion in strictly convex spaces. Math. Z. 267, 173–184 (2011). https://doi.org/10.1007/s00209-009-0615-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-009-0615-7

Mathematics Subject Classification (2000)

Navigation