Skip to main content
Log in

The Strauss conjecture on Kerr black hole backgrounds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We examine solutions to semilinear wave equations on black hole backgrounds and give a proof of an analog of the Strauss conjecture on the Schwarzschild and Kerr, with small angular momentum, black hole backgrounds. The key estimates are a class of weighted Strichartz estimates, which are used near infinity where the metrics can be viewed as small perturbations of the Minkowski metric, and a localized energy estimate on the black hole background, which handles the behavior in the remaining compact set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S.: On the Morawetz–Keel-Smith–Sogge inequality for the wave equation on a curved background. Publ. Res. Inst. Math. Sci. 42, 705–720 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alinhac, S.: Energy multipliers for perturbations of the Schwarzschild metric. Commun. Math. Phys. 288, 199–224 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. arXiv:0908.2265 [math.AP]

  4. Bachelot, A., Nicolas, J.-P.: Équation non linéaire de Klein Gordon dans des métriques de type Schwarzschild. (French) [Nonlinear Klein-Gordon equation in Schwarzschild-type metrics] C. R. Acad. Sci. Paris Sr. I Math. 316, 1047–1050 (1993)

    Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  6. Blue, P., Soffer, A.: Semilinear wave equations on the Schwarzschild manifold I: local decay estimates. Adv. Differ. Equ. 8, 595–614 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Blue, P., Soffer, A.: The wave equation on the Schwarzschild metric II: Local decay for the spin-2 Regge–Wheeler equation. J. Math. Phys. 46 (2005)

  8. Blue, P., Sterbenz, J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Commun. Math. Phys. 268, 481–504 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bony, J.-F., Häfner, D.: The semilinear wave equation on asymptotically Euclidean manifolds. Commun. Partial Differ. Equ. 35, 23–67 (2010)

    Article  MATH  Google Scholar 

  10. Burq, N.: Global Strichartz estimates for nontrapping geometries: about an article by H. Smith and C. Sogge. Commun. Partial Differ. Equ. 28, 1675–1683 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Burq, N., Planchon, F., Stalker, J.G., Tahvildar-Zadeh, A.S.: Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J. 53, 1665–1680 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Catania, D., Georgiev, V.: Blow-up for the semilinear wave equation in the Schwarzschild metric. Differ. Integr. Equ. 19, 799–830 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Clarendon Press, Oxford (1983)

    MATH  Google Scholar 

  14. Dafermos, M., Rodnianski, I.: Small-amplitude nonlinear waves on a black hole background. J. Math. Pures Appl. 84, 1147–1172 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dafermos, M., Rodnianski, I.: A note on energy currents and decay for the wave equation on a Schwarzschild, background (2007). arXiv:0710.0171 [math.AP]

  16. Dafermos, M., Rodnianski, I.: The red-shift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62, 859–919 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Evolution equations. Clay Mathematics Proceedings, vol. 17, pp. 97–205. American Mathematical Society, Providence (2013)

  18. Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I–II: the cases \(|a|\ll M\) or axisymmetry. arXiv:1010.5132 [gr-qc]

  19. Dafermos, M., Rodnianski, I.: The black hole stability problem for linear scalar perturbations. In: Damour, T. et al. (ed.) Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity, pp. 132–189. World Scientific, Singapore (2011)

  20. Du, Y., Metcalfe, J., Sogge, C.D., Zhou, Y.: Concerning the Strauss conjecture and almost global existence for nonlinear Dirichlet-wave equations in 4-dimensions. Commun. Partial Differ. Equ. 33, 1487–1506 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fang, D., Wang, C.: Weighted Strichartz estimates with angular regularity and their applications. Forum Math. 23, 181–205 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Georgiev, V., Lindblad, H., Sogge, C.D.: Weighted Strichartz estimates and global existence for semilinear wave equations. Am. J. Math. 119, 1291–1319 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Glassey, R.T.: Existence in the large for \(\square u=F(u)\) in two space dimensions. Math. Z. 178, 233–261 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Glassey, R.T.: Finite-time blow-up for solutions of nonlinear wave equations. Math. Z. 177, 323–340 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-time. Cambridge University Press, London (1973)

    Book  MATH  Google Scholar 

  26. Hidano, K.: Morawetz–Strichartz estimates for spherically symmetric solutions to wave equations and applications to semilinear Cauchy problems. Differ. Integr. Equ. 20, 735–754 (2007)

    MATH  MathSciNet  Google Scholar 

  27. Hidano, K., Metcalfe, J., Smith, H.F., Sogge, C.D., Zhou, Y.: On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles. Trans. Am. Math. Soc. 362, 2789–2809 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hidano, K., Yokoyama, K.: A remark on the almost global existence theorems of Keel, Smith, and Sogge. Funkcial. Ekvac. 48, 1–34 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. John, F.: Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscr. Math. 28, 235–268 (1979)

    Article  MATH  Google Scholar 

  30. Keel, M., Smith, H.F., Sogge, C.D.: Almost global existence for some semilinear wave equations, Dedicated to the memory of Thomas H. Wolff. J. Anal. Math. 87, 265–279 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Keel, M., Smith, H.F., Sogge, C.D.: Almost global existence for quasilinear wave equations in three space dimensions. J. Am. Math. Soc. 17, 109–153 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kenig, C.E., Ponce, G., Vega, L.: On the Zakharov and Zakharov–Schulman systems. J. Funct. Anal. 127, 204–234 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  33. Klainerman, S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Commun. Pure Appl. Math. 38, 321–332 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lindblad, H., Sogge, C.D.: Long-time existence for small amplitude semilinear wave equations. Am. J. Math. 118, 1047–1135 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Marzuola, J., Metcalfe, J., Tataru, D., Tohaneanu, M.: Strichartz estimates on Schwarzschild black hole backgrounds. Commun. Math. Phys. 293, 37–83 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Metcalfe, J., Sogge, C.D.: Long time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods. SIAM J. Math. Anal. 38, 188–209 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Metcalfe, J., Sogge, C.D.: Global existence of null-form wave equations in exterior domains. Math. Z. 256, 521–549 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Metcalfe, J., Tataru, D.: Global parametrices and dispersive estimates for variable coefficient wave equations. Math. Ann. 353, 1183–1237 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Metcalfe, J., Tataru, D., Tohaneanu, M.: Price’s law on nonstationary space-times. Adv. Math. 230, 995–1028 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Morawetz, C.S.: Exponential decay of solutions of the wave equation. Commun. Pure Appl. Math. 19, 439–444 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  41. Morawetz, C.S.: Time decay for the nonlinear Klein–Gordon equations. Proc. R. Soc. Lond. Ser. A 306, 291–296 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  42. Morawetz, C.S.: Decay for solutions of the exterior problem for the wave equation. Commun. Pure Appl. Math. 28, 229–264 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  43. Nicolas, J.P.: Nonlinear Klein–Gordon equation on Schwarzschild-like metrics. J. Math. Pures Appl. 74, 35–58 (1995)

    MATH  MathSciNet  Google Scholar 

  44. Ralston, J.V.: Solutions of the wave equation with localized energy. Commun. Pure Appl. Math. 22, 807–923 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  45. Schaeffer, J.: The equation \(\Box u =|u|^{p} \) for the critical value of \(p\). Proc. R. Soc. Edinb. Sect. A 101, 31–44 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  46. Sideris, T.C.: Nonexistence of global solutions to semilinear wave equations in high dimensions. J. Differ. Equ. 52, 378–406 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  47. Smith, H.F., Sogge, C.D.: Global Strichartz estimates for nontrapping perturbations of the Laplacian. Commun. Partial Differ. Equ. 25, 2171–2183 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  48. Smith, H.F., Sogge, C.D., Wang, C.: Strichartz estimates for Dirichlet-wave equations in two dimensions with applications. Trans. Am. Math. Soc. 364, 3329–3347 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  49. Sogge, C.D.: Lectures on non-linear wave equations, 2nd edn. International Press, Boston (2008)

    Google Scholar 

  50. Sogge, C.D., Wang, C.: Concerning the wave equation on asymptotically Euclidean manifolds. J. Anal. Math. 112, 1–32 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  51. Sterbenz, J.: Angular regularity and Strichartz estimates for the wave equation, with an appendix by I. Rodnianski. Int. Math. Res. Not., pp. 187–231 (2005)

  52. Strauss, W.A.: Dispersal of waves vanishing on the boundary of an exterior domain. Commun. Pure Appl. Math. 28, 265–278 (1975)

    Article  MATH  Google Scholar 

  53. Strauss, W.A.: Nonlinear scattering theory at low energy. J. Funct. Anal. 41, 110–133 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  54. Tataru, D.: Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation. Trans. Am. Math. Soc. 353, 795–807 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  55. Tataru, D., Tohaneanu, M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. IMRN 2011, 248–292 (2011)

    MATH  MathSciNet  Google Scholar 

  56. Triebel, H.: Interpolation theory, function spaces, differential operators. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  57. Tohaneanu, M.: Strichartz estimates on Kerr black hole backgrounds. Trans. Am. Math. Soc. 364, 689–702 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  58. Wang, C., Yu, X.: Concerning the Strauss conjecture on asymptotically Euclidean manifolds. J. Math. Anal. Appl. 379, 549–566 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  59. Wang, C., Yu, X.: Recent works on the Strauss conjecture. Recent advances in harmonic analysis and partial differential equations, pp. 235–256, Contemp. Math., vol. 581. American Mathematical Society, Providence (2012)

  60. Yordanov, B., Zhang, Q.S.: Finite time blow up for critical wave equations in high dimensions. J. Funct. Anal. 231, 361–374 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  61. Yu, X.: Generalized Strichartz estimates on perturbed wave equation and applications on Strauss conjecture. Differ. Integr. Equ. 24, 443–468 (2011)

    MATH  Google Scholar 

  62. Zhou, Y.: Cauchy problem for semilinear wave equations with small data in four space dimensions. J. Partial Differ. Equ. 8, 135–144 (1995)

    MATH  Google Scholar 

  63. Zhou, Y.: Blow up of solutions to semilinear wave equations with critical exponent in high dimensions. Chin. Ann. Math. Ser. B 28, 205–212 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first three authors were supported in part by the NSF. The fifth author was supported by Zhejiang Provincial Natural Science Foundation of China LR12A01002, the Fundamental Research Funds for the Central Universities, NSFC 11301478, 11271322 and J1210038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengbo Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindblad, H., Metcalfe, J., Sogge, C.D. et al. The Strauss conjecture on Kerr black hole backgrounds. Math. Ann. 359, 637–661 (2014). https://doi.org/10.1007/s00208-014-1006-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1006-x

Mathematics Subject Classification (2000)

Navigation