Skip to main content
Log in

Deformations of Bi-conformal Energy and a New Characterization of Quasiconformality

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The concept of hyperelastic deformations of bi-conformal energy is developed as an extension of quasiconformality. These deformations are homeomorphisms \(\, h :{\mathbb {X}} \xrightarrow []{{}_{\!\!\text{ onto }\,\,\!\!}}{\mathbb {Y}}\,\) between domains \(\,{\mathbb {X}}, {\mathbb {Y}} \subset {\mathbb {R}}^n\,\) of the Sobolev class \(\,{\mathscr {W}}^{1,n}_{\text{ loc }} ({\mathbb {X}}, {\mathbb {Y}})\,\) whose inverse \(\, f {\mathop {=\!\!=}\limits ^{\text{ def }}} h^{-1} :{\mathbb {Y}} \xrightarrow []{{}_{\!\!\text{ onto }\,\,\!\!}}{\mathbb {X}}\,\) also belongs to \(\,{\mathscr {W}}^{1,n}_{\text{ loc }}({\mathbb {Y}}, {\mathbb {X}})\,\). Thus the paper opens new topics in Geometric Function Theory (GFT) with connections to mathematical models of Nonlinear Elasticity (NE). In seeking differences and similarities with quasiconformal mappings we examine closely the modulus of continuity of deformations of bi-conformal energy. This leads us to a new characterization of quasiconformality. Specifically, it is observed that quasiconformal mappings behave locally at every point like radial stretchings; if a quasiconformal map \(\,h\,\) admits a function \(\,\phi \,\) as its optimal modulus of continuity at a point \(\,x_\circ \, \), then \(\,f = h^{-1}\,\) admits the inverse function \(\, \psi = \phi ^{-1}\,\) as its modulus of continuity at \(\, y_\circ = h(x_\circ ) \,\). That is to say, a poor (possibly harmful) continuity of \(\,h\,\) at a given point \(\,x_\circ \,\) is always compensated by a better continuity of \(\,f\,\) at \(\,y_\circ \,\), and vice versa. Such a gain/loss property, seemingly overlooked by many authors, is actually characteristic of quasiconformal mappings. It turns out that the elastic deformations of bi-conformal energy are very different in this respect. Unexpectedly, such a map may have the same optimal modulus of continuity as its inverse deformation. In line with Hooke’s Law, when trying to restore the original shape of the body (by the inverse transformation), the modulus of continuity may neither be improved nor become worse. However, examples to confirm this phenomenon are far from being obvious; indeed, elaborate computations are on the way. We eventually hope that our examples will gain an interest in the materials science, particularly in mathematical models of hyperelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Hereafter the notation \(\,{\mathbf {A}} \preccurlyeq {\mathbf {B}}\) stands for the inequality \(\,{\mathbf {A}} \leqslant c\, {\mathbf {B}}\) in which \(\, c>0\,\), called implied or hidden constant, plays no role. The implied constant may vary from line to line and is easily identified from the context, or explicitely specified if necessary.

  2.  In the above estimates the implied constants depend only on \(\,n\,\).

References

  1. Antman, S.S.: Nonlinear Problems of Elasticity. Applied Mathematical Sciences, 107Springer, New York 1995

    Google Scholar 

  2. Astala, K., Iwaniec, T., Martin, G.: Deformations of annuli with smallest mean distortion. Arch. Ration. Mech. Anal. 195(3), 899–921, 2010

    Google Scholar 

  3. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton 2009

    Google Scholar 

  4. Astala, K., Iwaniec, T., Martin, G., Onninen, J.: Extremal mappings of finite distortion. Proc. Lond. Math. Soc. 91(3), 655–702, 2005

    Google Scholar 

  5. Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63(4), 337–403 (1976/77)

  6. Ball, J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. A306, 557–611, 1982

    Google Scholar 

  7. Bojarski, B., Iwaniec, T.: Analytical foundations of the theory of quasiconformal mappings in \( R^{n}\). Ann. Acad. Sci. Fenn. Ser. A I Math. 8(2), 257–324, 1983

    Google Scholar 

  8. Caraman, P.: \(\,n\,\)-Dimensional Quasiconformal Mappings. Editura Academiei Romãne (1974)

  9. Campbell, D., Hencl, S.: A note on mappings of finite distortion: examples for the sharp modulus of continuity. Ann. Acad. Sci. Fenn. Math. 36(2), 531–536, 2011

    Google Scholar 

  10. Ciarlet, P.G.: Mathematical elasticity Vol. I. Three-dimensional elasticity. Studies in Mathematics and its Applications, 20North-Holland Publishing Co., Amsterdam 1988

    Google Scholar 

  11. Clop, A., Herron, D.: Mappings with finite distortion in \(L^p_{loc}\): modulus of continuity and compression of Hausdorff measure Israel. J. Math. 200(1), 225–250, 2014

    Google Scholar 

  12. Coron, J.-M., Gulliver, R.D.: Minimizing p-harmonic maps into spheres. J. Reine Angew. Math. 401, 82–100, 1989

    Google Scholar 

  13. Gehring, F.W.: Rings and quasiconformal mappings in space. Trans. Am. Math. Soc. 103, 353–393, 1962

    Google Scholar 

  14. Gehring, F.W.: Extension theorem for quasiconformal mappings in \(\, n\,\)-space. J. Anal. Math. 19, 149–169, 1967

    Google Scholar 

  15. Gehring, F. W.: Topics in quasiconformal mappings. Proceedings of ICM, Vol 1, Berkeley (1986) 62–80; also, Quasiconformal Space Mappings- A collection of surveys 1960-1990, Springer-Verlag (1992), 20-38, Lecture Notes in Mathematics Vol. 1508.

  16. Gehring, F.W., Martio, O.: Quasiextremal distance domains and extension of quasiconformal mappings. Journal D’Analyse Mathematique45, 181–206, 1985

    Google Scholar 

  17. Goldstein, V.M., Vodop’yanov, S.K.: Quasiconformal mappings and spaces of functions with generelized first derivatives. Sb. Mat. Z17, 515–531, 1976

    Google Scholar 

  18. Hardt, R., Lin, F.H., Wang, C.Y.: The p-energy minimality of \(x/|x|\). Commun. Anal. Geom. 6, 141–152, 1998

    Google Scholar 

  19. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs (1993).

  20. Hencl, S., Koskela, P.: Lectures on Mappings of Finite Distortion. Lecture Notes in Mathematics 2096Springer, Berlin 2014

    Google Scholar 

  21. Herron, D.A., Koskela, P.: Mappings of finite distortion: gauge dimension of generalized quasicircles. Ill. J. Math. 47(4), 1243–1259, 2003

    Google Scholar 

  22. Hitruhin, L.: Pointwise rotation for mappings with exponentially integrable distortion. Proc. Am. Math. Soc. 144(12), 5183–5195, 2016

    Google Scholar 

  23. Hong, M.-C.: On the minimality of the p-harmonic map \(\frac{x}{|x|} B^n \rightarrow S^{n-1}\). Calc. Var. Partial Differ. Equ. 13, 459–468, 2001

    Google Scholar 

  24. Iwaniec, T., Koskela, P., Onninen, J.: Mappings of finite distortion: monotonicity and continuity. Invent. Math. 144(3), 507–531, 2001

    Google Scholar 

  25. Iwaniec, T., Kovalev, L.V., Onninen, J.: The Nitsche conjecture. J. Am. Math. Soc. 24(2), 345–373, 2011

    Google Scholar 

  26. Iwaniec, T., Kovalev, L.V., Onninen, J.: Doubly connected minimal surfaces and extremal harmonic mappings. J. Geom. Anal. 22(3), 726–762, 2012

    Google Scholar 

  27. Iwaniec, T., Martin, G.: Geometric Function Theory and Non-linear Analysis. Oxford Mathematical MonographsOxford University Press, Oxford 2001

    Google Scholar 

  28. Iwaniec, T., Onninen, J.: Neohookean deformations of annuli, existence, uniqueness and radial symmetry. Math. Ann. 348(1), 35–55, 2010

    Google Scholar 

  29. Iwaniec, T., Onninen, J.: Deformations of finite conformal energy: existence and removability of singularities. Proc. Lond. Math. Soc. 100(3), 1–23, 2010

    Google Scholar 

  30. Iwaniec, T., Onninen, J.: An invitation to n-harmonic hyperelasticity. Pure Appl. Math. Q. 7(2), 319–343, 2011

    Google Scholar 

  31. Iwaniec, T., Onninen, J.: Deformations of finite conformal energy: boundary behavior and limit theorems. Trans. AMS363(11), 5605–5648, 2011

    Google Scholar 

  32. Iwaniec, T., Onninen, J.: Hyperelastic deformations of smallest total energy. Arch. Ration. Mech. Anal. 194(3), 927–986, 2009

    Google Scholar 

  33. Iwaniec, T., Onninen, J.: \(\, n\,\)-Harmonic mappings between annuli. Memoirs Am. Math. Soc. 218 (2012)

  34. Iwaniec, T., Šverák, V.: On mappings with integrable dilatation. Proc. AMS118(1), 181–188, 1993

    Google Scholar 

  35. Jordens, M., Martin, G.J.: Deformations with smallest weighted \(L^p\) average distortion and Nitsche type phenomena. J. Lond. Math. Soc. 85(2), 282–300, 2012

    Google Scholar 

  36. Jäger, W., Kaul, H.: Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems. J. Reine Angew. Math. 343, 146–161, 1983

    Google Scholar 

  37. Kelingos, J.A.: Characterization of quasiconformal mappings in terms of harmonic and hyperbolic measures. Ann. Acad. Sci. Fenn. Ser. A. I368, 1–16, 1965

    Google Scholar 

  38. Koskela, P., Onninen, J.: Mappings of finite distortion: the sharp modulus of continuity. Trans. Am. Math. Soc. 355(5), 1905–1920, 2003

    Google Scholar 

  39. Koski, A., Onninen, J.: Radial symmetry of p-harmonic minimizers. Arch. Ration. Mech. Anal. 230(1), 321–342, 2018

    Google Scholar 

  40. Lebesgue, H.: Sur les intégrales singuliéres. Ann. Fac. Sci. Univ. Toulouse3, 25–117, 1909

    Google Scholar 

  41. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications Inc, New York 1994

    Google Scholar 

  42. Meynard, F.: Existence and nonexistence results on the radially symmetric cavitation problem. Q. Appl. Math. 50, 201–226, 1992

    Google Scholar 

  43. Müller, S., Spector, S.J.: An existence theory for nonlinear elasticity that allows for cavitation. Arch. Ration. Mech. Anal. 131, 1–66, 1995

    Google Scholar 

  44. Onninen, J., Tengvall, V.: Mappings of \(L^p\)-integrable distortion: regularity of the inverse. Proc. R. Soc. Edinb. Sect. A146(3), 647–663, 2016

    Google Scholar 

  45. Onninen, J., Zhong, X.: A note on mappings of finite distortion: the sharp modulus of continuity. Mich. Math. J. 53(2), 329–335, 2005

    Google Scholar 

  46. Reshetnyak, YuG: Space Mappings with Bounded Distortion. Translations of Mathematical Monographs, 73American Mathematical Society, Providence, RI 1989

    Google Scholar 

  47. Rickman, S.: Quasiregular Mappings. Springer, Berlin 1993

    Google Scholar 

  48. Sivaloganathan, J.: Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity. Arch. Ration. Mech. Anal. 96, 97–136, 1986

    Google Scholar 

  49. Sivaloganathan, J., Spector, S.J.: Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire25(1), 201–213, 2008

    Google Scholar 

  50. Stuart, C.A.: Radially symmetric cavitation for hyperelastic materials. Anal. Non Liné aire2, 33–66, 1985

    Google Scholar 

  51. Vuorinen, M.: Conformal Geometry and Quasiregular Mappings, vol. 1319. Lecture Notes in MathematicsSpringer, Berlin 1988

    Google Scholar 

  52. Väisälä, J.: Lectures on n-Dimensional Quasiconformal Mappings, vol. 229. Lecture Notes in MathematicsSpringer, Berlin 1971

    Google Scholar 

  53. Väisälä, J.: On quasiconformal mappings in space. Ann. Acad. Sci. Fenn. Ser. AI298, 1–36, 1961

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Iwaniec.

Additional information

Communicated by D. Kinderlehrer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T. Iwaniec was supported by the NSF Grant DMS-1802107. J. Onninen was supported by the NSF Grant DMS-1700274. This research was done while Z. Zhu was visiting Mathematics Department at Syracuse University. He wishes to thank SU for the hospitality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwaniec, T., Onninen, J. & Zhu, Z. Deformations of Bi-conformal Energy and a New Characterization of Quasiconformality. Arch Rational Mech Anal 236, 1709–1737 (2020). https://doi.org/10.1007/s00205-020-01502-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01502-w

Navigation