Skip to main content
Log in

Convergence of Approximations to Stochastic Scalar Conservation Laws

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We develop a general framework for the analysis of approximations to stochastic scalar conservation laws. Our aim is to prove, under minimal consistency properties and bounds, that such approximations are converging to the solution to a stochastic scalar conservation law. The weak probabilistic convergence mode is convergence in law, the most natural in this context. We use also a kinetic formulation and martingale methods. Our result is applied to the convergence of the finite volume method in the companion paper (Dotti and Vovelle in Convergence of the finite volume method for scalar conservation laws with multiplicative noise: an approach by kinetic formulation, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauzet, C.: Time-splitting approximation of the Cauchy problem for a stochastic conservation law. Math. Comput. Simulation 118, 73–86 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bauzet, C., Charrier, J., Gallouët, T.: Convergence of flux-splitting finite volume schemes for hyperbolic scalar conservation laws with a multiplicative stochastic perturbation. Math. Comp. 85(302), 2777–2813 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauzet, C., Charrier, J., Gallouët, T.: Convergence of monotone finite volume schemes for hyperbolic scalar conservation laws with multiplicative noise. Stoch. Partial Differ. Equ. Anal. Comput. 4(1), 150–223 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Bauzet, C., Vallet, G., Wittbold, P.: The Cauchy problem for conservation laws with a multiplicative stochastic perturbation. J. Hyperbolic Differ. Equ. 9(4), 661–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauzet, C., Vallet, G., Wittbold, P.: The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation. J. Funct. Anal. 266(4), 2503–2545 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Billingsley, P.: Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999. A Wiley-Interscience Publication

  7. Brzeźniak, Z., Ondreját, M.: Weak solutions to stochastic wave equations with values in Riemannian manifolds. Comm. Partial Differential Equations 36(9), 1624–1653 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castaing, C., Raynaud de Fitte, P., Valadier, M.: Young measures on topological spaces, volume 571 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2004. With applications in control theory and probability theory

  9. Chen, G.-Q., Ding, Q., Karlsen, K.H.: On nonlinear stochastic balance laws. Arch. Ration. Mech. Anal. 204(3), 707–743 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, G.-Q., Perthame, B.: Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(4), 645–668 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Chung, K.L., Williams, R.J.: Introduction to stochastic integration, 2nd edn. Probability and its Applications. Birkhäuser Boston Inc, Boston, MA (1990)

    Book  MATH  Google Scholar 

  12. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

  13. Debussche, A., Hofmanová, M., Vovelle, J.: Degenerate parabolic stochastic partial differential equations: Quasilinear case. Annals of Probability (2015)

  14. Debussche, A., Vovelle, J.: Scalar conservation laws with stochastic forcing. J. Funct. Anal. 259(4), 1014–1042 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. DiPerna, R.J.: Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82(1), 27–70 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dotti, S., Vovelle, J.: Convergence of the finite volume method for scalar conservation laws with multiplicative noise: an approach by kinetic formulation. hal-01391073 (2016)

  17. Droniou, J.: Intégration et espaces de sobolev à valeurs vectorielles (2001). http://www-gm3.univ-mrs.fr/polys/

  18. E, W., Khanin, K., Mazel, A., Sinai, Y.: Invariant measures for Burgers equation with stochastic forcing. Ann. of Math. (2) 151(3), 877–960 (2000)

  19. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, pages 713–1020. North-Holland, Amsterdam, 2000

  20. Feng, J., Nualart, D.: Stochastic scalar conservation laws. J. Funct. Anal. 255(2), 313–373 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gess, B., Perthame, B., Souganidis, P.E.: Semi-discretization for stochastic scalar conservation laws with multiple rough fluxes. SIAM Journal on Numerical Analysis 54(4), 2187–2209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gess, B., Souganidis, P.E.: Long-time behavior, invariant measures and regularizing effects for stochastic scalar conservation laws (Nov. 2014). arXiv:1411.3939 [math]

  23. Gess, B., Souganidis, P.E.: Scalar conservation laws with multiple rough fluxes. Communications in Mathematical Sciences 13(6), 1569–1597 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô's stochastic equations via approximations. Probab. Theory Related Fields 105(2), 143–158 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gyöngy, I., Rovira, C.: On \(L^p\)-solutions of semilinear stochastic partial differential equations. Stochastic Process. Appl. 90(1), 83–108 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hofmanová, M.: Degenerate parabolic stochastic partial differential equations. Stochastic Process. Appl. 123(12), 4294–4336 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hofmanová, M.: A Bhatnagar-Gross-Krook approximation to stochastic scalar conservation laws. Ann. Inst. Henri Poincaré Probab. Stat. 51(4), 1500–1528 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hofmanová, M.: Scalar conservation laws with rough flux and stochastic forcing. Stochastic Partial Differential Equations. Analysis and Computations 4(3), 635–690 (2016)

  29. Hofmanová, M., Seidler, J.: On weak solutions of stochastic differential equations. Stoch. Anal. Appl. 30(1), 100–121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jacod, J., Shiryaev, A.N.: Limit theorems for stochastic processes, volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2003

  31. Karlsen, K.H.: Storrø sten, E.B.: On stochastic conservation laws and Malliavin calculus. Journal of Functional Analysis 272(2), 421–497 (2017)

    Article  MathSciNet  Google Scholar 

  32. Kim, Y.: Asymptotic behavior of solutions to scalar conservation laws and optimal convergence orders to \(N\)-waves. J. Differential Equations 192(1), 202–224 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Koley, U., Majee, A.K., Vallet, G.: A finite difference scheme for conservation laws driven by Levy noise. arXiv:1604.07840 [math], (Apr. 2016)

  34. Kröker, I., Rohde, C.: Finite volume schemes for hyperbolic balance laws with multiplicative noise. Appl. Numer. Math. 62(4), 441–456 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lions, P.-L., Perthame, B., Souganidis, P.E.: Scalar conservation laws with rough (stochastic) fluxes. Stoch. Partial Differ. Equ. Anal. Comput. 1(4), 664–686 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Lions, P.-L., Perthame, B., Souganidis, P.E.: Stochastic averaging lemmas for kinetic equations. In: Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2011–2012, Sémin. Équ. Dériv. Partielles, pages Exp. No. XXVI, 17. École Polytech., Palaiseau, 2013

  37. Lions, P.-L., Perthame, B., Souganidis, P.E.: Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case. Stoch. Partial Differ. Equ. Anal. Comput. 2(4), 517–538 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Lions, P.-L., Perthame, B., Tadmor, E.: A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7(1), 169–191 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mohamed, K., Seaid, M., Zahri, M.: A finite volume method for scalar conservation laws with stochastic time-space dependent flux functions. J. Comput. Appl. Math. 237(1), 614–632 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ondreját, M.: Stochastic nonlinear wave equations in local Sobolev spaces. Electron. J. Probab. 15(33), 1041–1091 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Perthame, B.: Kinetic formulation of conservation laws. Oxford Lecture Series in Mathematics and its Applications, vol. 21. Oxford University Press, Oxford (2002)

  42. Revuz, D., Yor, M.: Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, 1999

  43. Storrøsten, E.B., Karlsen, K.H.: Analysis of a splitting method for stochastic balance laws. arXiv:1601.02428 [math], (Jan. 2016)

  44. Vallet, G., Wittbold, P.: On a stochastic first-order hyperbolic equation in a bounded domain. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12(4), 613–651 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yosida, K.: Functional analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin-New York, sixth edition, 1980

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Vovelle.

Additional information

Communicated by A. Bressan

Julien Vovelle was supported by ANR Projects STOSYMAP and STAB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dotti, S., Vovelle, J. Convergence of Approximations to Stochastic Scalar Conservation Laws. Arch Rational Mech Anal 230, 539–591 (2018). https://doi.org/10.1007/s00205-018-1252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1252-2

Navigation