Skip to main content
Log in

h-Principles for the Incompressible Euler Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In Dissipative Euler Flows and Onsager’s Conjecture. arxiv.1205.3626, preprint, 2012, De Lellis and Székelyhidi construct Hölder continuous, dissipative (weak) solutions to the incompressible Euler equations in the torus \({{\mathbb T}^3}\). The construction consists of adding fast oscillations to the trivial solution. We extend this result by establishing optimal h-principles in two and three space dimensions. Specifically, we identify all subsolutions (defined in a suitable sense) which can be approximated in the H −1-norm by exact solutions. Furthermore, we prove that the flows thus constructed on \({{\mathbb T}^3}\) are genuinely three-dimensional and are not trivially obtained from solutions on \({{\mathbb T}^2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Borisov Ju.F.: C 1,α-isometric immersions of Riemannian spaces. Doklady 163, 869–871 (1965)

    Google Scholar 

  2. Borisov, Yu.F.: Irregular C 1,β-surfaces with analytic metric., Sib. Mat. Zh. 45(1), 25–61 (2004, Russian, English)

  3. Conti, S., De Lellis, C., Székelyhidi, László, Jr.: h-principle and rigidity for C 1,α isometric embeddings. In: The Proceedings of the Abel Symposium 2010, 2011, To appear

  4. Constantin, P., E, W., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207–209 (1994) MR MR1298949 (96e:76025)

  5. Cordoba, D., Faraco, D., Gancedo, F.: Lack of uniqueness for weak solutions of the incompressible porous media equation. Arch. Ration. Mech. Anal. 200(3), 725–746 (2011) MR 2796131

    Google Scholar 

  6. Chiodaroli, E.: A counterexample to well-posedness of entropy solutions to the compressible Euler system (2012, Preprint)

  7. De Lellis, C., Székelyhidi, L. Jr.: The Euler equations as a differential inclusion. Ann. Math. (2) 170(3), 1417–1436 (2009) MR 2600877 (2011e:35287)

    Google Scholar 

  8. De Lellis, C., Székelyhidi, L. Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010) MR 2564474 (2011d:35386)

    Google Scholar 

  9. De Lellis, C., Székelyhidi, L. Jr.: Continuous dissipative Euler flows. In: Inventiones Mathematicae, 2012, To appear

  10. De Lellis, C., Székelyhidi, L. Jr.: Dissipative Euler Flows and Onsager’s Conjecture. arxiv.1205.3626 (2012, preprint)

  11. De Lellis, C., Székelyhidi, L. Jr.: The h-principle and the equations of fluid dynamics. Bull. Am. Math. Soc. (N.S.) 49(3), 347–375 (2012)

    Google Scholar 

  12. Eliashberg, Y., Mishachev, N.: Introduction to the h-principle. In: Graduate Studies in Mathematics, vol. 48. American Mathematical Society, Providence, RI, 2002. MR 1909245 (2003g:53164)

  13. Eyink, G.L., Sreenivasan, K.R.: Onsager and the theory of hydrodynamic turbulence. Rev. Modern Phys. 78(1), 87–135 (2006) MR 2214822 (2007g:76108)

    Google Scholar 

  14. Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer. Phys. D 78(3–4), 222–240 (1994) MR 1302409 (95m:76020)

    Google Scholar 

  15. Frisch, U.: Turbulence, Cambridge University Press, Cambridge, 1995, The legacy of A. N. Kolmogorov. MR 1428905 (98e:76002)

  16. Gromov, M.: Partial differential relations. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 9. Springer-Verlag, Berlin, 1986. MR 90a:58201

  17. Hamilton R.S.: The Inverse Function Theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7(1), 65–222 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolmogoroff, A.: The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers. C.R. (Doklady) Acad. Sci. URSS (N.S.) 30, 301–305 (1941) MR 0004146

  19. Majda, A.: The interaction of nonlinear analysis and modern applied mathematics. In: Proceedings of the International Congress of Mathematicians, Kyoto, Japan, vol. I, pp. 175–191, 1991

  20. Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow. In: Cambridge Texts in Applied Mathematics, vol. 27. Cambridge University Press, Cambridge, 2002. MR 1867882 (2003a:76002)

  21. Nash J.: C 1 isometric imbeddings. Ann. Math. 60, 383–396 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  22. Onsager, L.: Statistical hydrodynamics.Nuovo Cimento (9) 6, no. Supplemento, 2(Convegno Internazionale di Meccanica Statistica), 279–287 (1949). MR 0036116 (12,60f)

  23. Scheffer, V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993) MR 1231007 (94h:35215)

    Google Scholar 

  24. Shnirelman, A.: On the nonuniqueness of weak solution of the Euler equation. Commun. Pure Appl. Math. 50(12), 1261–1286 (1997) MR 1476315 (98j:35149)

  25. Shnirelman, A.: Weak solutions with decreasing energy of incompressible Euler equations. Commun. Math. Phys. 210(3), 541–603 (2000) MR 1777341 (2002g:76009)

  26. Shvydkoy, R.: Convex integration for a class of active scalar equations. J. Am. Math. Soc. 24(4), 1159–1174 (2011) MR 2813340

    Google Scholar 

  27. Spring D.: Convex Integration Theory. Solutions to the h-Principle in Geometry and Topology. Birkhäuser Verlag, Boston (1998)

    Book  MATH  Google Scholar 

  28. Székelyhidi L. Jr., Wiedemann E.: Young measures generated by ideal incompressible fluid flows. Arch. Ration. Mech. Anal. 206(1), 333–366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Székelyhidi, L. Jr.: Relaxation of the incompressible porous medium equation (2011, Preprint)

  30. Wiedemann E.: Existence of weak solutions for the incompressible Euler equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(5), 727–730 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Choffrut.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choffrut, A. h-Principles for the Incompressible Euler Equations. Arch Rational Mech Anal 210, 133–163 (2013). https://doi.org/10.1007/s00205-013-0639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0639-3

Keywords

Navigation