Skip to main content
Log in

Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The Boltzmann equation without Grad’s angular cutoff assumption is believed to have a regularizing effect on the solutions because of the non-integrable angular singularity of the cross-section. However, even though this has been justified satisfactorily for the spatially homogeneous Boltzmann equation, it is still basically unsolved for the spatially inhomogeneous Boltzmann equation. In this paper, by sharpening the coercivity and upper bound estimates for the collision operator, establishing the hypo-ellipticity of the Boltzmann operator based on a generalized version of the uncertainty principle, and analyzing the commutators between the collision operator and some weighted pseudo-differential operators, we prove the regularizing effect in all (time, space and velocity) variables on the solutions when some mild regularity is imposed on these solutions. For completeness, we also show that when the initial data has this mild regularity and a Maxwellian type decay in the velocity variable, there exists a unique local solution with the same regularity, so that this solution acquires the C regularity for any positive time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alexandre R.: Around 3D Boltzmann operator without cutoff. A New formulation. Math. Modelling Numer. Anal. 343, 575–590 (2000)

    Article  MathSciNet  Google Scholar 

  2. Alexandre R.: Some solutions of the Boltzmann equation without angular cutoff. J. Stat. Phy. 104, 327–358 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alexandre R.: Integral estimates for linear singular operator linked with Boltzmann operator. Part I. Small singularities 0 < ν < 1. Indiana Univ. Math. J. 55, 1975–2021 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alexandre R., Desvillettes L., Villani C., Wennberg B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152, 327–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alexandre R., He L.: Integral estimates for a linear singular operator linked with Boltzmann operator. Part II. High singularities 1 ≦ ν <  2. Kinet. Relat. Models 1, 491–514 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: Uncertainty principle and regularity for Boltzmann type equations. C. R. Acad. Sci. Paris, Ser. I 345, 673–677 (2007)

    MATH  MathSciNet  Google Scholar 

  7. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: Uncertainty principle and kinetic equations. J. Funct. Anal. 255, 2013–2066 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Alexandre R., ElSafadi M.: Littlewood Paley decomposition and regularity issues in Boltzmann equation homogeneous equations. I. Non cutoff and Maxwell cases. Math. Models Methods Appl. Sci. 15, 907–920 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Alexandre, R., ElSafadi, M.: Littlewood Paley decomposition and regularity issues in Boltzmann homogeneous equations. II. Non cutoff and non Maxwell cases. DCDS, special issue (to appear)

  10. Alexandre R., Villani C.: On the Boltzmann equation for long-range interaction. Commun. Pure Appl. Math. 55, 30–70 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Alexandre R., Villani C.: The Landau approximation in plasma physics. Ann. IHP. Analyse Non Lin. 21, 61–95 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Arkeryd L.: Intermolecular forces of infinite range and the Boltzmann equation. Arch. Ration. Mech. Anal. 77, 11–21 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bobylev A.: The theory of nonlinear, spatially uniform Boltzmann equation for Maxwell molecules. Sov. Sci. Rev. C. Math. Phys. 7, 111–233 (1988)

    MathSciNet  Google Scholar 

  14. Bony J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l’École Normale Supérieure 14, 209–246 (1981)

    MATH  MathSciNet  Google Scholar 

  15. Bouchut F.: Hypoelliptic regularity in kinetic equations. J. Math. Pure Appl. 81, 1135–1159 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Cercignani, C.: The Boltzmann equation and its applications. Applied Mathematical Sciences, Vol. 67. Springer, Berlin, 1988

  17. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical theory of Dilute gases. Applied Mathematical Sciences, Vol. 106. Springer, New York, 1994

  18. Chen H., Li W.-X., Xu C.-J.: Propagation of Gevrey regularity for solutions of Landau equations. Kinet. Relat. Models 1, 355–368 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Chen Y.: Smoothness of classical solutions to the Vlasov–Poisson–Landau System. Kinet. Relat. Models 1(3), 369–386 (2008)

    MATH  MathSciNet  Google Scholar 

  20. Chen Y., Desvillettes L., He L.: Smoothing effects for classical solutions of the full Landau equation. Arch. Ration. Mech. Anal. 193, 21–55 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Desvillettes L.: About the regularization properties of the non cut-off Kac equation. Commun. Math. Phys. 168, 417–440 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Desvillettes L.: Regularization properties of the 2-dimensional non radially symmetric non cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules. Trans. Theory Stat. Phys. 26–3, 341–357 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  23. Desvillettes, L.: About the use of the Fourier transform for the Boltzmann equation. In: Summer School on “Methods and Models of Kinetic Theory” (M& MKT 2002). Riv. Mat. Univ. Parma (7)(2), 1–99 (2003)

  24. Desvillettes, L., Furioli, G., Terraneo, E.: Propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian molecules. Trans. Am. Math. Soc. (to appear)

  25. Desvillettes L., Villani C.: On the spatially homogeneous Landau equation for hard potentials. Part I. Existence, uniqueness and smoothness. Commun. Partial Differ. Equ. 25-1-2, 179–259 (2000)

    Article  MathSciNet  Google Scholar 

  26. Desvillettes L., Wennberg B.: Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Commun. Partial Differ. Equ. 29-1-2, 133–155 (2004)

    Article  MathSciNet  Google Scholar 

  27. DiPerna R.J., Lions P.L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130, 321–366 (1989)

    Article  MathSciNet  Google Scholar 

  28. Duan R.J., Li M.-R., Yang T.: Propagation of singularities in the solutions to the Boltzmann equation near equilibrium. Math. Models Methods Appl. Sci. 18, 1093–1114 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Fefferman C.: The uncertainty principle. Bull. Am. Math. Soc. 9, 129–206 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. Guo Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231, 391–434 (2002)

    Article  MATH  ADS  Google Scholar 

  31. Grad, H.: Asymptotic Theory of the Boltzmann Equation II. Rarefied Gas Dynamics, Vol. 1 (Eds. Laurmann J.A.). Academic Press, New York, 26–59, 1963

  32. Huo Z.H., Morimoto Y., Ukai S., Yang T.: Regularity of solutions for spatially homogeneous Boltzmann equation without Angular cutoff. Kinet. Relat. Models 1, 453–489 (2008)

    MATH  MathSciNet  Google Scholar 

  33. Kumano-go H.: Pseudo-Differential Operators. MIT Press, Cambridge (1982)

    MATH  Google Scholar 

  34. Lions P.L.: Regularity and compactness for Boltzmann collision operator without angular cut-off. C. R. Acad. Sci. Paris Series I 326, 37–41 (1998)

    MATH  ADS  Google Scholar 

  35. Morimoto Y.: The uncertainty principle and hypoelliptic operators. Publ. RIMS Kyoto Univ. 23, 955–964 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  36. Morimoto Y.: Estimates for degenerate Schrödinger operators and hypoellipticity for infinitely degenerate elliptic operators. J. Math. Kyoto Univ. 32, 333–372 (1992)

    MATH  MathSciNet  Google Scholar 

  37. Morimoto Y., Morioka T.: The positivity of Schrödinger operators and the hypoellipticity of second order degenerate elliptic operators. Bull. Sc. Math. 121, 507–547 (1997)

    MATH  MathSciNet  Google Scholar 

  38. Morimoto Y., Ukai S., Xu C.-J., Yang T.: Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discret. Contin. Dyn. Syst. Ser. A 24, 187–212 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Morimoto Y., Xu C.-J.: Hypoelliticity for a class of kinetic equations. J. Math. Kyoto Univ. 47, 129–152 (2007)

    MATH  MathSciNet  Google Scholar 

  40. Morimoto Y., Xu C.-J.: Ultra-analytic effect of Cauchy problem for a class of kinetic equations. J. Differ. Equ. 247, 596–670 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Mouhot C., Strain R.M.: Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl. (9) 87(5), 515–535 (2007)

    MATH  MathSciNet  Google Scholar 

  42. Pao, Y.P.: Boltzmann collision operator with inverse power intermolecular potential, I, II. Commun. Pure Appl. Math. 27, 407–428, 559–581 (1974)

    Google Scholar 

  43. Ukai S.: Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff. Japan J. Appl. Math. 1-1, 141–156 (1984)

    Article  MathSciNet  Google Scholar 

  44. Ukai, S.: Solutions of the Boltzmann equation. Pattern and Waves—Qualitave Analysis of Nonlinear Differential Equations, Studies of Mathematics and Its Applications, Vol. 18. (Eds. Mimura M. and Nishida T.). Kinokuniya-North-Holland, Tokyo, 37–96, 1986

  45. Villani C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143, 273–307 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  46. Villani, C.: A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics, Vol. 1 (Eds. Friedlander S. and Serre D.). North-Holland, Amsterdam, 71–305, 2002

  47. Xu, C.-J.: Nonlinear microlocal analysis. General theory of partial differential equations and microlocal analysis. Trieste, 1995, pp. 155–182. Pitman Res. Notes Math. Ser., Vol. 349. Longman, Harlow, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Ukai.

Additional information

Communicated by T.-P. Liu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandre, R., Morimoto, Y., Ukai, S. et al. Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation. Arch Rational Mech Anal 198, 39–123 (2010). https://doi.org/10.1007/s00205-010-0290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0290-1

Keywords

Navigation