Skip to main content

Advertisement

Log in

The essential role of CYP2E1 in metabolism and hepatotoxicity of N,N-dimethylformamide using a novel Cyp2e1 knockout mouse model and a population study

  • Toxicogenomics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

N,N-Dimethylformamide (DMF) is a widespread contaminant of leather factories and their surrounding environment. There is a lack of direct in vivo evidence supporting CYP2E1 as a primary enzyme responsible for DMF metabolism and hepatotoxicity. In this study, a novel Cyp2e1 knockout (KO) mouse model was generated and used to assess whether DMF metabolism and hepatotoxicity is CYP2E1 dependent using an acute toxicity protocol with a single dose of 1500 mg DMF/kg. An epidemiological study in 698 DMF-exposed workers and 188 non-DMF-exposed controls was conducted to investigate the associations between functional polymorphisms of CYP2E1 (rs6413432/rs2031920) and DMF metabolite (N-methylcarbmoylated-hemoglobin [NMHb]). We successfully established Cyp2e1 KO mice with evidence from DNA sequence analysis, which showed 1-bp insertion at 65 bp (C) site of Cyp2e1 Exon 1. In addition, western blot and in vivo pharmacokinetic study also showed a complete absence of CYP2E1 protein and a 92% and 88% reduction in CYP2E1 activity among males and females, respectively. DMF metabolism as evidenced by increased blood NMHb, and hepatotoxicity as evidenced by elevated liver/body weight ratio, activity of liver enzymes and massive liver necrosis were detected in wild-type (WT) mice but were completely abrogated in KO mice, strongly supporting a CYP2E1-dependent pattern of DMF metabolism and hepatotoxicity. Moreover, variant allele of CYP2E1-rs6413432 was also significantly associated with higher NMHb levels in DMF-exposed workers (P = 0.045). The increase of glucose-regulated protein 94 detected in WT mice but not in KO mice suggested CYP2E1-dependent endoplasmic reticulum stress may be a key mechanism underlying DMF-induced hepatotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelmegeed MA, Choi Y, Ha SK, Song BJ (2016) Cytochrome P450-2E1 promotes aging-related hepatic steatosis, apoptosis and fibrosis through increased nitroxidative stress. Free Radic Biol Med 91:188–202

    Article  CAS  PubMed  Google Scholar 

  • Abdelmegeed MA, Choi Y, Godlewski G, Ha SK, Banerjee A, Jang S, Song BJ (2017) Cytochrome P450-2E1 promotes fast food-mediated hepatic fibrosis. Sci Rep 7:39764. https://doi.org/10.1038/srep39764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amato G, Grasso E, Longo V, Gervasi PG (2001) Oxidation of N, N-dimethylformamide and N, N-diethylformamide by human liver microsomes and human recombinant P450s. Toxicol Lett 124(1–3):11–19

    Article  CAS  PubMed  Google Scholar 

  • Angerer J, Göen T, Krämer A, Käfferlein HU (1998) N-methylcarbamoyl adducts at the N-terminal valine of globin in workers exposed to N. N-dimethylformamide. Arch Toxicol 72(5):309–313

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Melchior WB Jr, Guo L (2014) Endoplasmic reticulum stress in drug- and environmental toxicant-induced liver toxicity. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 32(1):83–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chieli E, Saviozzi M, Menicagli S, Branca T, Gervasi PG (1995) Hepatotoxicity and P-4502E1-dependent metabolic oxidation of N, N-dimethylformamide in rats and mice. Arch Toxicol 69(3):165–170

    Article  CAS  PubMed  Google Scholar 

  • Dara L, Ji C, Kaplowitz N (2011) The contribution of ER stress to liver diseases. Hepatology 53(5):1752–1763

    Article  CAS  PubMed  Google Scholar 

  • Dragin N, Uno S, Wang B, Dalton TP, Nebert DW (2007) Generation of ‘humanized’ hCYP1A1_1A2_Cyp1a1/1a2(−/−) mouse line. Biochem Biophys Res Commun 359(3):635–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorito A, Larese F, Molinari S, Tina Zanin T (1997) Liver function alterations in synthetic leather workers exposed to dimethylformamide. Am J Ind Med 32(3):255–260

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FJ (2003) Role of gene knockout and transgenic mice in the study of xenobiotic metabolism. Drug Metab Rev 35(4):319–335

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Zeng Y, Deng H, Liao J, Zheng Y, Li J, Kessing B, O’Brien SJ (2010) Genetic polymorphisms of CYP2E1, GSTP1, NQO1, and MPO, and the risk of nasopharyngeal carcinoma in a Han Chinese population of southern China. BMC Res Notes 3(1):212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada M, Abe M, Tokumoto Y, Miyake T, Murakami H, Hiasa Y, Matsuura B, Sato K, Onji M (2009) Occupational liver injury due to N, N-dimethylformamide in the synthetics industry. Intern Med 48(18):1647–1650

    Article  PubMed  Google Scholar 

  • Hyland R, Gescher A, Thummel K, Schiller C, Jheeta P, Mynett K, Smith AW, Mráz J (1992) Metabolic oxidation and toxification of N-methylformamide catalyzed by the cytochrome P450 isoenzyme CYP2E1. Mol Pharmacol 41(2):259–266

    CAS  PubMed  Google Scholar 

  • IARC (International Agency for Research on Cancer) (2016) IARC monographs on the evaluation of carcinogenic risks to humans. In: Some Industrial Chemicals, Vol. 115. IARC, Lyon, France

  • Jia K, Li L, Liu Z, Hartog M, Kluetzman K, Zhang QY, Ding X (2014) Generation and characterization of a novel CYP2A13–transgenic mouse model. Drug Metab Dispos 42(8):1341–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Kennedy GL, Sherman H (1986) Acute and subchronic toxicity of dimethylformamide and dimethylacetamide following various routes of administration. Drug Chem Toxicol 9(2):147–170

    Article  CAS  PubMed  Google Scholar 

  • Kestell P, Gledhill AP, Threadgill MD, Gescher A (1986) S-(N-Methylcarbamoyl)-N-acetylcysteine: a urinary metabolite of the hepatotoxic experimental antitumour agent N-methylformamide (NSC 3051) in mouse, rat and man. Biochem Pharmacol 35(14):2283–2286

    Article  CAS  PubMed  Google Scholar 

  • Klaassen CD (2008) Casarett & doull’s toxicology: the basic science of poisons, 7th edn. Kansas City, Kansas

    Google Scholar 

  • Kobayashi K, Urashima K, Shimada N, Chiba K (2002) Substrate specificity for rat cytochrome P450 (CYP) isoforms: screening with cDNA-expressed systems of the rat. Biochem Pharmacol 63(5):889–896

    Article  CAS  PubMed  Google Scholar 

  • Koop DR (1992) Oxidative and reductive metabolism by cytochrome P450 2E1. FASEB J 6(2):724–730

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Buters JT, Pineau T, Fernandez-Salguero P, Gonzalez FJ (1996) Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 271(20):12063–12067

    Article  CAS  PubMed  Google Scholar 

  • Li L, Megaraj V, Wei Y, Ding X (2014) Identification of cytochrome P450 enzymes critical for lung tumorigenesis by the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK): insights from a novel Cyp2abfgs-null mouse. Carcinogenesis 35(11):2584–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Zhu X, Zhang C, Jiang K, Huang C, Qin X (2017) Role of CYP2E1 polymorphisms in breast cancer: a systematic review and meta-analysis. Cancer Cell Int 17(1):11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo B, Lam BS, Lee SH, Wey S, Zhou H, Wang M, Chen SY, Adams GB, Lee AS (2011) The Endoplasmic reticulum chaperone protein GRP94 is required for maintaining hematopoietic stem cell interactions with the adult bone marrow niche. PLoS ONE 6(5):e20364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch DW, Placke ME, Persing RL, Ryan MJ (2003) Thirteen-week inhalation toxicity of N, N-dimethylformamide in F344/N rats and B6C3F1 mice. Toxicol Sci 72(2):347–358

    Article  CAS  PubMed  Google Scholar 

  • Mccarver DG, Byun R, Hines RN, Hichme M, Wegenek W (1998) A genetic polymorphism in the regulatory sequences of human CYP2E1: association with increased chlorzoxazone hydroxylation in the presence of obesity and ethanol intake. Toxicol Appl Pharmacol 152(1):276–281

    Article  CAS  PubMed  Google Scholar 

  • Mohammad MK, Avila D, Zhang J, Barve S, Arteel G, McClain C, Joshi-Barve S (2012) Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress. Toxicol Appl Pharmacol 265(1):73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mráz J, Turecek F (1987) Identification of N-acetyl-S-(N-methylcarbamoyl)cysteine, a human metabolite of N. N-dimethylformamide and N-methylformamide. J Chromatogr 414(2):399–404

    Article  PubMed  Google Scholar 

  • Mráz J, Jheeta P, Gescher A, Hyland R, Thummel K, Threadgill MD (1993) Investigation of the mechanistic basis of N, N-dimethylformamide toxicity. Metabolism of N, N-dimethylformamide and its deuterated isotopomers by cytochrome P450 2E1. Chem Res Toxicol 6(2):197–207

    Article  PubMed  Google Scholar 

  • Mráz J, Dusková S, Gálová E, Nohová H, Krausová P, Linhart I, Simek P (2002) Improved gas chromatographic-mass spectrometric determination of the N-methylcarbamoyl adduct at the N-terminal valine of globin, a metabolic product of the solvent N, N-dimethylformamide. J Chromatogr B Analyt Technol Biomed Life Sci 778(1–2):357–365

    Article  PubMed  Google Scholar 

  • Mráz J, Cimlová J, Stránský V, Nohová H, Kičová R, Šimek P (2006) N -Methylcarbamoyl-lysine adduct in globin: a new metabolic product and potential biomarker of N. N-dimethylformamide in humans. Toxicol Lett 162(2–3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Nagy G, Kardon T, Wunderlich L, Szarka A, Kiss A, Schaff Z, Bánhegyi G, Mandl J (2007) Acetaminophen induces ER dependent signaling in mouse liver. Arch Biochem Biophys 459(2):273–279

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Nomiyama T, Haufroid V, Buchet JP, Miyauchi H, Tanaka S, Yamauchi T, Imamiya S, Seki Y, Omae K, Lison D (2001a) Insertion polymorphism of CYP2E1 and urinary N-methylformamide after N, N- dimethylformamide exposure in Japanese workers. Int Arch Occup Environ Health 74(7):519–522

    Article  CAS  PubMed  Google Scholar 

  • Nomiyama T, Nakashima H, Chen LL, Tanaka S, Miyauchi H, Yamauchi T, Sakurai H, Omae K (2001b) N, N-dimethylformamide: significance of dermal absorption and adjustment method for urinary N-methylformamide concentration as a biological exposure item. Int Arch Occup Environ Health 74(3):224–228

    Article  CAS  PubMed  Google Scholar 

  • Nomiyama T, Nakashima H, Sano Y et al (2001c) Does the polymorphism of cytochrome P-450 2E1 affect the metabolism of N, N-dimethylformamide? Comparison of the half-lives of urinary N-methylformamide. Arch Toxicol 74(12):755–759

    Article  CAS  PubMed  Google Scholar 

  • Pinto P, Salgado CG, Santos N, Alencar DO, Santos S, Hutz MH, Ribeiro-dos-Santos  (2012) Polymorphisms in the CYP2E1 and GSTM1 genes as possible protection factors for leprosy patients. PLoS ONE 7(10):e47498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian YL, Xu CM, Lu YY, Wang YH, Wu H, Zhang X (2011) The interventions effect-assessment of the workers exposed to N, N-dimethylformamide by percutaneous in a synthetic leather factory. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 29(6):405–408

    CAS  PubMed  Google Scholar 

  • Ramachandran PK, Gandhe BR, Venkateswaran KS, Venkateswaran KS, Kaushik MP, Vijayaraghavan R, Agarwal GS, Gopalan N, Suryanarayana MV, Shinde SK, Sriramachari S (1988) Gas chromatographic studies of the carbamylation of haemoglobin by methyl isocyanate in rats and rabbits. J Chromatogr 426(2):239–247

    Article  CAS  PubMed  Google Scholar 

  • Richard J, Lewis SL (2004) Sax’s Dangerous Properties of Industrial Materials, 11th edn. Wiley and Sons, Inc., Hoboken

    Google Scholar 

  • Senoh H, Aiso S, Arito H, Nishizawa T, Nagano K, Yamamoto S, Matsushima T (2004) Carcinogenicity and chronic toxicity after inhalation exposure of rats and mice to N. N-dimethylformamide. J Occup Health 46(6):429–439

    Article  CAS  PubMed  Google Scholar 

  • Sohn OS, Fiala ES, Requeijo SP, Weisburger JH, Gonzalez FJ (2001) Differential effects of CYP2E1 status on the metabolic activation of the colon carcinogens azoxymethane and methylazoxymethanol. Cancer Res 61(23):8435–8440

    CAS  PubMed  Google Scholar 

  • Staron M, Yang Y, Liu B, Li J, Shen Y, Zúñiga-Pflücker JC, Aguila HL, Goldschneider I, Li Z (2010) gp96, an endoplasmic reticulum master chaperone for integrins and Toll-like receptors, selectively regulates early T and B lymphopoiesis. Blood 115(12):2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, Jeong D, Kim JS, Lee HW (2013) Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 31(1):23–24

    Article  CAS  PubMed  Google Scholar 

  • Tang K, Li Y, Zhang Z, Gu Y, Xiong Y, Feng G, He L, Qin S (2010) The PstI/RsaI and DraI polymorphisms of CYP2E1 and head and neck cancer risk: a meta-analysis based on 21 case-control studies. BMC Cancer 10(1):575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Threadgill MD, Axworthy DB, Baillie TA, Farmer PB, Farrow KC, Gescher A, Kestell P, Pearson PG, Shaw AJ (1987) Metabolism of N-methylformamide in mice: primary kinetic deuterium isotope effect and identification of S-(N-methylcarbamoyl)glutathione as a metabolite. J Pharmacol Exp Ther 242(1):312–319

    CAS  PubMed  Google Scholar 

  • Tolando R, Zanovello A, Ferrara R, Iley JN, Manno M (2001) Inactivation of rat liver cytochrome P450 (P450) by N, N-dimethylformamide and N. N-dimethylacetamide. Toxicol Lett 124(1–3):101–111

    Article  CAS  PubMed  Google Scholar 

  • Uematsu F, Ikawa S, Kikuchi H, Sagami I, Kanamaru R, Abe T, Satoh K, Motomiya M, Watanabe M (1994) Restriction fragment length polymorphism of the human CYP2E1 (cytochrome P450IIE1) gene and susceptibility to lung cancer: possible relevance to low smoking exposure. Pharmacogenetics 4(2):58–63

    Article  CAS  PubMed  Google Scholar 

  • Uzi D, Barda L, Scaiewicz V, Mills M, Mueller T, Gonzalez-Rodriguez A, Valverde AM, Iwawaki T, Nahmias Y, Xavier R, Chung RT, Tirosh B, Shibolet O (2013) CHOP is a critical regulator of acetaminophen-induced hepatotoxicity. J Hepatol 59(3):495–503

    Article  CAS  PubMed  Google Scholar 

  • Valentine JL, Lee SS, Seaton MJ, Asgharian B, Farris G, Corton JC, Gonzalez FJ, Medinsky MA (1996) Reduction of benzene metabolism and toxicity in mice that lack CYP2E1 expression. Toxicol Appl Pharmacol 141(1):205–213

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Huang C, Wei Y, Zhu Q, Tian W, Zhang Q (2014) Short-term exposure to dimethylformamide and the impact on digestive system disease: an outdoor study for volatile organic compound. Environ Pollut 190(7):133–138

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Wu H, Li L, Liu Z, Zhou X, Zhang QY, Weng Y, D’Agostino J, Ling G, Zhang X, Kluetzman K, Yao Y, Ding X (2012) Generation and characterization of a CYP2A13/2B6/2F1-transgenic mouse model. Drug Metab Dispos 40(6):1144–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong FW, Chan WY, Lee SS (1998) Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. Toxicol Appl Pharmacol 153(1):109–118

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Liu Q, Wang C, Xu B, Guan M, Ye M, Jiang H, Zheng M, Zhang M, Zhao W, Jiang X, Leng S, Cheng J (2017) A comparative benchmark dose study for N, N-dimethylformamide induced liver injury in a Chinese occupational cohort. Toxicol Sci 158(1):140–150

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Zhou YH, Zhou ZY, Liu J, Yuan X, Matsuo K, Takezaki T, Tajima K, Cao J (2009) A novel polymorphism rs1329149 of CYP2E1 and a known polymorphism rs671 of ALDH2 of alcohol metabolizing enzymes are associated with colorectal cancer in a Southwestern Chinese population. Cancer Epidemiol Biomarkers Prev 18(9):2522–2527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81372963). We thank Ms Maria Picchi from Lovelace Respiratory Research Institute for scientific editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Cheng or Shuguang Leng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Liu, Q., Wang, L. et al. The essential role of CYP2E1 in metabolism and hepatotoxicity of N,N-dimethylformamide using a novel Cyp2e1 knockout mouse model and a population study. Arch Toxicol 93, 3169–3181 (2019). https://doi.org/10.1007/s00204-019-02567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02567-7

Keywords

Navigation