Skip to main content

Advertisement

Log in

High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Neuroinflammation is a pathophysiological process present in a number of neurodegenerative disorders, such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, stroke, traumatic brain injury including chronic traumatic encephalopathy and other age-related CNS disorders. Although there is still much debate about the initial trigger for some of these neurodegenerative disorders, during the progression of disease, broad range anti-inflammatory drugs including cytokine suppressive anti-inflammatory drugs (CSAIDs) might be promising therapeutic options to limit neuroinflammation and improve the clinical outcome. One of the most promising CSAIDs is curcumin, which modulates the activity of several transcription factors (e.g., STAT, NF-κB, AP-1) and their pro-inflammatory molecular signaling pathways. However, normal curcumin preparations demonstrate low bioavailability in vivo. To increase bioavailability, preparations of high bioavailability curcumin have been introduced to achieve therapeutically relevant concentrations in target tissues. This literature review aims to summarize the pharmacokinetic and toxicity profile of different curcumin formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Adapted from Wilken et al. (2011)

Fig. 3

Adapted from Rose-John (2012)

Similar content being viewed by others

References

  • Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007a) Curcumin: the Indian solid gold. In: Aggarwal BB, Surh Y-J, Shishodia S (eds) The molecular targets and therapeutic uses of curcumin in health and disease. Springer US, Boston, pp 1–75

    Chapter  Google Scholar 

  • Aggarwal BB, Surh Y-J, Shishodia S (2007b) The molecular targets and therapeutic uses of curcumin in health and disease, vol 595. Springer Science & Business Media, Springer US, Boston

  • Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16(25):2766–2778

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H, Barger S, Barnum S et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antony B, Merina B, Iyer VS, Judy N, Lennertz K, Joyal S (2008) A pilot cross-over study to evaluate human oral bioavailability of BCM-95®CG (Biocurcumax™), a novel bioenhanced preparation of curcumin. Indian J Pharm Sci 70(4):445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basnet P, Tho I, Skalko-Basnet N (2010) Curcumin a wonder drug of 21st century: liposomal delivery system targeting vaginal inflammation. In: 5th International Congress on Complementary Medicine Research, Tromsø, Norway

  • Baum L, Lam CW, Cheung SK, et al. (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol. doi:10.1097/jcp.0b013e318160862c

    PubMed  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet (London, England) 368(9533):387–403. doi:10.1016/s0140-6736(06)69113-7

    Article  CAS  Google Scholar 

  • Bombardelli E, Curri S, Della L, Del N, Tubaro A, Gariboldi P (1989) Complexes between phospholipids and vegetal derivatives of biological interest. Fitoterapia 60:1–9

    Google Scholar 

  • Bombardelli E, Cristoni A, Morazzoni P (1994) Phytosomes in functional cosmetics. Fitoterapia 65:387–401

    CAS  Google Scholar 

  • Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer’s disease. In: Jellinger K, Fazekas F, Windisch M (eds) Ageing and dementia, vol 53. Springer, Vienna, pp 127–140

  • Campbell IL, Erta M, Lim SL et al (2014) Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J Neurosci 34(7):2503–2513. doi:10.1523/jneurosci.2830-13.2014

    Article  CAS  PubMed  Google Scholar 

  • Carroll RE, Benya RV, Turgeon DK et al (2011) Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res 4(3):354–364. doi:10.1158/1940-6207.capr-10-0098

    Article  CAS  Google Scholar 

  • Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med (New York NY) 9(1):161–168. doi:10.1089/107555303321223035

    Article  Google Scholar 

  • Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87(1):44–53

    CAS  Google Scholar 

  • Cheng A-L, Hsu C-H, Lin J-K et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21(4B):2895–2900

    CAS  PubMed  Google Scholar 

  • Citernesi U, Sciacchitano M (1995) Phospholipid/active ingredient complexes. Cosmet Toilet 110(11):57–68

    CAS  Google Scholar 

  • Cornago P, Claramunt RM, Bouissane L, Alkorta I, Elguero J (2008) A study of the tautomerism of β-dicarbonyl compounds with special emphasis on curcuminoids. Tetrahedron 64(35):8089–8094. doi:10.1016/j.tet.2008.06.065

    Article  CAS  Google Scholar 

  • Cox KH, Pipingas A, Scholey AB (2015) Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol 29(5):642–651. doi:10.1177/0269881114552744

    Article  CAS  PubMed  Google Scholar 

  • Cuomo J, Appendino G, Dern AS et al (2011) Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod 74(4):664–669. doi:10.1021/np1007262

    Article  CAS  PubMed  Google Scholar 

  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. doi:10.1038/nrn2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis S, Laroche S (2003) What can rodent models tell us about cognitive decline in Alzheimer’s disease? Mol Neurobiol 27(3):249–276. doi:10.1385/mn:27:3:249

    Article  CAS  PubMed  Google Scholar 

  • Dhillon N, Aggarwal BB, Newman RA et al (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14(14):4491–4499. doi:10.1158/1078-0432.ccr-08-0024

    Article  CAS  PubMed  Google Scholar 

  • DiSilvestro RA, Joseph E, Zhao S, Bomser J (2012) Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J 11:79. doi:10.1186/1475-2891-11-79

  • Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145. doi:10.1016/j.it.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  • Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454. doi:10.1056/nejm199902113400607

    Article  CAS  PubMed  Google Scholar 

  • Ganiger S, Malleshappa HN, Krishnappa H, Rajashekhar G, Ramakrishna Rao V, Sullivan F (2007) A two generation reproductive toxicity study with curcumin, turmeric yellow, in Wistar rats. Food Chem Toxicol 45(1):64–69 doi:10.1016/j.fct.2006.07.016

    Article  CAS  PubMed  Google Scholar 

  • Garcea G, Berry DP, Jones DJ et al (2005) Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cospons Am Soc Prev Int Soc Cell 14(1):120–125

    CAS  Google Scholar 

  • Goel A, Aggarwal BB (2010) Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer 62(7):919–930. doi:10.1080/01635581.2010.509835

    Article  CAS  PubMed  Google Scholar 

  • Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75(4):787–809. doi:10.1016/j.bcp.2007.08.016

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro RJ, Santana I, Bras JM, Santiago B, Paiva A, Oliveira C (2007) Peripheral inflammatory cytokines as biomarkers in Alzheimer’s disease and mild cognitive impairment. Neurodegener Dis 4(6):406–412. doi:10.1159/000107700

    Article  CAS  PubMed  Google Scholar 

  • He P, Zhong Z, Lindholm K et al (2007) Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 178(5):829–841. doi:10.1083/jcb.200705042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20. doi:10.1042/bj20030407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nature reviews Immunology 14(7):463–477. doi:10.1038/nri3705

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. The Lancet Neurology 14(4):388–405. doi:10.1016/s1474-4422(15)70016-5

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? The Lancet Neurology 8(4):382–397. doi:10.1016/s1474-4422(09)70062-6

    Article  CAS  PubMed  Google Scholar 

  • Honda M, Yamamoto S, Cheng M, et al. (1992) Human soluble IL-6 receptor: its detection and enhanced release by HIV infection. J Immunol (Baltimore, Md: 1950) 148(7):2175–2180

    CAS  Google Scholar 

  • Hoppe JB, Coradini K, Frozza RL et al (2013) Free and nanoencapsulated curcumin suppress beta-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3beta signaling pathway. Neurobiol Learn Mem 106:134–144. doi:10.1016/j.nlm.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  • Jäger R, Lowery RP, Calvanese AV, Joy JM, Purpura M, Wilson JM (2014) Comparative absorption of curcumin formulations. Nutr J 13(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK (2005) Chemistry and biological activities of C. longa. Trends Food Sci Technol 16(12):533–548 doi:10.1016/j.tifs.2005.08.006

    Article  CAS  Google Scholar 

  • Kanai M, Yoshimura K, Asada M et al (2011) A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 68(1):157–164. doi:10.1007/s00280-010-1470-2

    Article  CAS  PubMed  Google Scholar 

  • Kanai M, Imaizumi A, Otsuka Y et al (2012) Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol 69(1):65–70. doi:10.1007/s00280-011-1673-1

    Article  CAS  PubMed  Google Scholar 

  • Kidd P, Head K (2005) A review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybin-phosphatidylcholine complex (Siliphos). Alternative medicine review : a journal of clinical therapeutic 10(3):193–203

    Google Scholar 

  • Kocher A, Schiborr C, Behnam D, Frank J (2015) The oral bioavailability of curcuminoids in healthy humans is markedly enhanced by micellar solubilisation but not further improved by simultaneous ingestion of sesamin, ferulic acid, naringenin and xanthohumol. J Funct Foods 14:183–191

    Article  CAS  Google Scholar 

  • Lopez-Lazaro M (2008) Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 52(Suppl 1):S103–27 doi:10.1002/mnfr.200700238

    PubMed  Google Scholar 

  • Lust JA, Donovan KA, Kline MP, Greipp PR, Kyle RA, Maihle NJ (1992) Isolation of an mRNA encoding a soluble form of the human interleukin-6 receptor. Cytokine 4(2):96–100

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    CAS  PubMed  Google Scholar 

  • Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ (2007) Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemoth Pharm 60(2):171–177. doi:10.1007/s00280-006-0355-x

    Article  CAS  Google Scholar 

  • Mathew A, Pushpanath S (2005) Indian spices. DEE BEE Info Publications, India

  • Mauri P, Simonetti P, Gardana C et al (2001) Liquid chromatography/atmospheric pressure chemical ionization mass spectrometry of terpene lactones in plasma of volunteers dosed with Ginkgo biloba L. extracts. RCM 15(12):929–934. doi:10.1002/rcm.316

    CAS  PubMed  Google Scholar 

  • Meager (2004) Cytokines: interleukins. In: Meyers R (ed) Encyclopedia of molecular cell biology and molecular medicine, Wiley-Blackwell, Hoboken, New Jersey, pp 115–151

  • Meda L, Cassatella MA, Szendrei GI et al (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374(6523):647–650. doi:10.1038/374647a0

    Article  CAS  PubMed  Google Scholar 

  • Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: the role of Abeta and its associated proteins. Neurobiol Aging 22(6):885–893

    Article  CAS  PubMed  Google Scholar 

  • Milobedzka J, von Kostanecki S (1910) On knowledge of curcumin. Ber Dtsch Chem Ges 43:2163–2170. doi:10.1002/cber.191004302168

  • Morgan D, Gordon MN, Tan J, Wilcock D, Rojiani AM (2005) Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics. J Neuropathol Exp Neurol 64(9):743–753

    Article  CAS  PubMed  Google Scholar 

  • National Toxicology P (1993) NTP toxicology and carcinogenesis studies of turmeric oleoresin (CAS No. 8024-37-1) (major component 79%–85% curcumin, CAS No. 458-37-7) in F344/N rats and B6C3F1 Mice (feed studies). Natl Toxicol Program Tech Rep Ser 427:1–275

    Google Scholar 

  • Norman J (1991) The complete book of spices. Viking Studio Books, Penguin Books USA Inc, Westminster, London

  • Novick D, Engelmann H, Wallach D, Rubinstein M (1989) Soluble cytokine receptors are present in normal human urine. J Exp Med 170(4):1409–1414

    Article  CAS  PubMed  Google Scholar 

  • Parada E, Buendia I, Navarro E, Avendano C, Egea J, Lopez MG (2015) Microglial HO-1 induction by curcumin provides antioxidant, antineuroinflammatory, and glioprotective effects. Mol Nutr Food Res 59(9):1690–1700 doi:10.1002/mnfr.201500279

    Article  CAS  PubMed  Google Scholar 

  • Pawar YB, Munjal B, Arora S, Karwa M, Kohli G, Paliwal JK, Bansal AK (2012) Bioavailability of a lipidic formulation of curcumin in healthy human volunteers. Pharmaceutics 4(4):517–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payton F, Sandusky P, Alworth WL (2007) NMR study of the solution structure of curcumin. J Nat Prod 70(2):143–146. doi:10.1021/np060263s

    Article  CAS  PubMed  Google Scholar 

  • Priyadarsini KI (2013) Chemical and structural features influencing the biological activity of curcumin. Curr Pharm Des 19(11):2093–2100

    CAS  PubMed  Google Scholar 

  • Ringman JM, Frautschy SA, Teng E, et al. (2012) Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimer’s Res Ther 4(5):1–8 doi:10.1186/alzrt146

    Google Scholar 

  • Rogers JT, Leiter LM, McPhee J et al (1999) Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J Biol Chem 274(10):6421–6431

    Article  CAS  PubMed  Google Scholar 

  • Rose-John S (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci 8(9):1237–1247. doi:10.7150/ijbs.4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roughley PJ, Whiting DA (1973) Experiments in the biosynthesis of curcumin. J Chem Soc Perkin Trans 1(0):2379–2388. doi:10.1039/P19730002379

    Article  Google Scholar 

  • Schiborr C, Kocher A, Behnam D, Jandasek J, Toelstede S, Frank J (2014) The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res 58(3):516–527

    Article  CAS  PubMed  Google Scholar 

  • Shaiju B (2008) Psychological problem of patients with rheumatoid arthritis and guidelines for health professionals. Nurs J India 99(9):202–204

  • Sharma RA, McLelland HR, Hill KA et al (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7(7):1894–1900

    CAS  PubMed  Google Scholar 

  • Sharma RA, Euden SA, Platton SL et al (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10(20):6847–6854. doi:10.1158/1078-0432.ccr-04-0744

    Article  CAS  PubMed  Google Scholar 

  • Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer (Oxford, England: 1990) 41(13):1955–1968. doi:10.1016/j.ejca.2005.05.009

    Article  CAS  Google Scholar 

  • Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13(2):139–145. doi:10.1038/nm1551

    Article  CAS  PubMed  Google Scholar 

  • Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68(10):930–941. doi:10.1016/j.biopsych.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  • Swomley AM, Butterfield DA (2015) Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch Toxicol 89(10):1669–1680. doi:10.1007/s00204-015-1556-z

    Article  CAS  PubMed  Google Scholar 

  • Tan ZS, Seshadri S (2010) Inflammation in the Alzheimer’s disease cascade: culprit or innocent bystander? Alzheimer’s Res Ther 2(2):6. doi:10.1186/alzrt29

    Article  Google Scholar 

  • Tiwari SK, Agarwal S, Seth B et al (2014) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/beta-catenin pathway. ACS nano 8(1):76–103. doi:10.1021/nn405077y

    Article  CAS  PubMed  Google Scholar 

  • Tsai YM, Chien CF, Lin LC, Tsai TH (2011) Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration. Int J Pharm 416(1):331–338. doi:10.1016/j.ijpharm.2011.06.030

    Article  CAS  PubMed  Google Scholar 

  • Vergoni AV, Tosi G, Tacchi R, Vandelli MA, Bertolini A, Costantino L (2009) Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomed Nanotechnol Biol Med 5(4):369–377. doi:10.1016/j.nano.2009.02.005

    Article  CAS  Google Scholar 

  • Wahlstrom B, Blennow G (1978) A study on the fate of curcumin in the rat. Acta pharmacologica et toxicologica 43(2):86–92

    Article  CAS  PubMed  Google Scholar 

  • Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44(1):181–193. doi:10.1016/j.neuron.2004.09.010

    Article  CAS  PubMed  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30(4):552–557. doi:10.1042/

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Pan MH, Cheng AL et al (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15(12):1867–1876

    Article  CAS  PubMed  Google Scholar 

  • Wilken R, Veena MS, Wang MB, Srivatsan ES (2011) Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10:12. doi:10.1186/1476-4598-10-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa D, Shirai N, Amatsubo T et al (2010) Relationship between the tautomeric structures of curcumin derivatives and their Abeta-binding activities in the context of therapies for Alzheimer’s disease. Biomaterials 31(14):4179–4185. doi:10.1016/j.biomaterials.2010.01.142

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhao T, Zou Y, Zhang JH, Feng H (2014) Curcumin inhibits microglia inflammation and confers neuroprotection in intracerebral hemorrhage. Immunol Lett 160(1):89–95. doi:10.1016/j.imlet.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  • Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45(2):27–37. doi:10.1097/AIA.0b013e318034194e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Kang R, Zeh HJ 3rd, Lotze MT, Tang D (2013) DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death. Autophagy 9(4):451–458. doi:10.4161/auto.23691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge the moral and financial support of Graduate research school, Western Sydney University, most particularly our Research fellowships committee. My thanks also go out to our Pharmacology group, School of Medicine and all the academic and technical staff for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry Niedermayer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, F., Liang, A., Rangel, A. et al. High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation. Arch Toxicol 91, 1623–1634 (2017). https://doi.org/10.1007/s00204-017-1939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-1939-4

Keywords

Navigation