Skip to main content
Log in

Global DNA methylation profiling of manganese-exposed human neuroblastoma SH-SY5Y cells reveals epigenetic alterations in Parkinson’s disease-associated genes

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Manganese (Mn) is an essential trace element required for optimal functioning of cellular biochemical pathways in the central nervous system. Elevated exposure to Mn through environmental and occupational exposure can cause neurotoxic effects resulting in manganism, a condition with clinical symptoms identical to idiopathic Parkinson’s disease. Epigenetics is now recognized as a biological mechanism involved in the etiology of various diseases. Here, we investigated the role of DNA methylation alterations induced by chronic Mn (100 µM) exposure in human neuroblastoma (SH-SY5Y) cells in relevance to Parkinson’s disease. A combined analysis of DNA methylation and gene expression data for Parkinson’s disease-associated genes was carried out. Whole-genome bisulfite conversion and sequencing indicate epigenetic perturbation of key genes involved in biological processes associated with neuronal cell health. Integration of DNA methylation data with gene expression reveals epigenetic alterations to PINK1, PARK2 and TH genes that play critical roles in the onset of Parkinsonism. The present study suggests that Mn-induced alteration of DNA methylation of PINK1–PARK2 may influence mitochondrial function and promote Parkinsonism. Our findings provide a basis to further explore and validate the epigenetic basis of Mn-induced neurotoxicity .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APC:

Adenomatous polyposis coli

ATP2B2:

ATPase plasma membrane Ca2+ transporting 2

CXXC1:

DNA-binding protein with PHD finger and CXXC domain

DLK1:

Delta-like 1 homolog (Drosophila)

DRD2:

Dopamine receptor D2

GBE1:

1,4-Alpha-glucan branching enzyme

Mn:

Manganese

NRXN3:

Neurexin 3

NSF:

N-Ethylmaleimide-sensitive factor

PAN2:

Poly(A)-specific ribonuclease subunit

PARK2:

Parkin RBR E3 ubiquitin protein ligase

PINK1:

PTEN-induced putative kinase 1

PPI:

Protein–protein interaction

SLC25A4:

Solute carrier family 25 member 4

SNCA:

Synuclein alpha

STUB1:

STIP1 homology and U-box containing protein 1

TH:

Tyrosine hydroxylase

VDAC:

Voltage-dependent anion-selective channel protein 1

WGBS:

Whole-genome bisulfite conversion and sequencing

YWHAZ:

Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta

References

  • ATSDR Agency for Toxic Substances and Disease Registry (2012) Toxicological profile for manganese. Department of health and human services, Public Health Service, US

  • Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21:243–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakthavatsalam S, Sharma SD, Sonawane M, Thirumalai V, Datta A (2014) A zebrafish model of manganism reveals reversible and treatable symptoms that are independent of neurotoxicity. Dis Model Mech 7:1239–1251. doi:10.1242/dmm.016683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthier A, Jimenez-Sainz J, Pulido R (2013) PINK1 regulates histone H3 trimethylation and gene expression by interaction with the polycomb protein EED/WAIT1. Proc Natl Acad Sci USA 110:14729–14734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornhorst J, Meyer S, Weber T, Boker C, Marschal T, Mangerich A, Beneke S, Bürkle A, Schwerdtle T (2013) Molecular mechanisms of Mn induced neurotoxicity: RONS generation, genotoxicity, and DNA-damage response. Mol Nutr Food Res 57:1255–1269

    Article  CAS  PubMed  Google Scholar 

  • Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2009) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320(5880):1224–1229

    Article  Google Scholar 

  • Crump KS (2000) Manganese exposures in Toronto during use of the gasoline additive, methylcyclopentadienyl manganese tricarbonyl. J Expo Anal Environ Epidemiol 10:227–239

    Article  CAS  PubMed  Google Scholar 

  • de Bie RM, Gladstone RM, Strafella AP, Ko JH, Lang AE (2007) Manganese-induced Parkinsonism associated with methcathinone (Ephedrone) abuse. Arch Neurol 64:886–889

    Article  PubMed  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki R (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  • Erikson KM, Thompson K, Aschner J, Aschner M (2007) Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther 113:369–377

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein MM, Jerrett M (2007) A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environ Res 104:420–432

    Article  CAS  PubMed  Google Scholar 

  • Gautier CA, Kitada T, Shen J (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Sci USA 105:11364–11369

    Article  CAS  Google Scholar 

  • Gorell JM, Peterson EL, Rybicki BA, Johnson C (2004) Multiple risk factors for Parkinson’s disease. J Neurol Sci 217:169–174

    Article  PubMed  Google Scholar 

  • Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, Zhu H, Chang Q, Gao Y, Ming GL, Song H (2014) Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 17:215–222

    Article  CAS  PubMed  Google Scholar 

  • Higashi Y, Asanuma M, Miyazaki I, Hattori N, Mizuno Y, Ogawa N (2004) Parkin attenuates manganese-induced dopaminergic cell death. J Neurochem 89:1490–1497

    Article  CAS  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  • Kaidery NA, Tarannum S, Thomas B (2013) Epigenetic landscape of Parkinson’s Disease: emerging role in disease mechanisms and therapeutic modalities. Neurotherapeutics 10:698–708. doi:10.1007/s13311-013-0211-8

    Article  Google Scholar 

  • Kanthasamy A, Jin H, Anantharam V, Sondarva G, Rangasamy V, Rana A (2012) Emerging neurotoxic mechanisms in environmental factors induced neurodegeneration. Neurotoxicology 33:833–837. doi:10.1016/j.neuro.2012.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwakye GF, Paoliello MM, Mukhopadhyay S, Bowman AB, Aschner M (2015) Manganese-induced parkinsonism and parkinson's disease: shared and distinguishable features. Int J Environ Res Public Health 12:7519–7540

  • Kim Y, Kim JM, Kim JW, Yoo CI, Lee CR, Lee JH (2002) Dopamine transporter density is decreased in Parkinsonian patients with a history of manganese exposure: what does it mean? Mov Disord 17:568–575

    Article  CAS  PubMed  Google Scholar 

  • Kitada T, Pisani A, Porter DR, Yamaguchi H, Tscherter A, Martella G, Bonsi P, Zhang C, Pothos EN, Shen J (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA 104:11441–11446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sun L, Cai T, Zhang Y, Lv S, Wang Y (2010) α-Synuclein overexpression during manganese-induced apoptosis in SH-SY5Y neuroblastoma cells. Brain Res Bull 81:428–433

    Article  CAS  PubMed  Google Scholar 

  • Lin DC, Xu L, Chen Y, Yan H, Hazawa M, Doan N, Said JW, Ding LW, Liu LZ, Yang H, Yu S, Kahn M, Yin D, Koeffler HP (2015) Genomic and functional analysis of the E3 ligase PARK2 in glioma. Cancer Res. doi:10.1158/0008-5472

    Google Scholar 

  • Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker J (2013a) Global epigenomic reconfiguration during mammalian brain development. Science. doi:10.1126/science.1237905

    PubMed  PubMed Central  Google Scholar 

  • Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC et al (2013b) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucas EL, Bertrand P, Guazzetti S, Donna F, Peli M, Jursa TP, Lucchini R, Smith DR (2015) Impact of ferromanganese alloy plants on household dust manganese levels: implications for childhood exposure. Environ Res 138:279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J, Selfridge J, Guy J, Kastan NR, Robinson ND, de Lima Alves F, Rappsilber J (2013) Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci 17:898–902

    Article  Google Scholar 

  • Maccani JZ, Koestler DC, Houseman EA, Armstrong DA, Marsit CJ, Kelsey K (2015) DNA methylation changes in the placenta are associated with fetal manganese exposure. Reprod Toxicol 47:43–49. doi:10.1016/j.reprotox.2015.05.002 Epub 2015 May 15

    Article  Google Scholar 

  • Martin C, Zhang Y (2007) Mechanisms of epigenetic inheritance. Cell Biol 19:266–272

    CAS  Google Scholar 

  • Martinez R, Ha HC (2011) Environmental epigenetics in metal exposure. Epigenetics 6:820–827

    Article  Google Scholar 

  • Matsuda N, Tanaka K (2015) The PARK2/Parkin receptor on damaged mitochondria revisited—uncovering the role of phosphorylated ubiquitin chains. Autophagy 11:1700–1701. doi:10.1080/15548627.2015.1071760

    Article  PubMed  PubMed Central  Google Scholar 

  • McCubrey JA, Lahair MM, Franklin R (2006) Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 8:1775–1789

    Article  CAS  PubMed  Google Scholar 

  • Migliore L, Coppedè F (2009) Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res 674:73–84

    Article  CAS  PubMed  Google Scholar 

  • Moyano EM, Pora S, Escaramis G, Rabionnet R, Iraola S, Kagerbauer B, Parrilla YE, Ferrer I, Estivill X, Martí EL (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067–3078. doi:10.1093/hmg/ddr210

    Article  Google Scholar 

  • Nan X, Ng HH, Johnson CA et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    Article  CAS  PubMed  Google Scholar 

  • Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle R (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    Article  PubMed  PubMed Central  Google Scholar 

  • Narendra D, Walker JE, Youle R (2012) Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 4:a011338

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen SS, Checkoway H, Criswell SR, Farin FM, Stapleton PL, Sheppard L, Racette BA (2014) Inducible nitric oxide synthase gene methylation and parkinsonism in manganese exposed welders. Parkinsonism Relat Disord. doi:10.1016/j.parkreldis.2015.01.007

    PubMed  Google Scholar 

  • Orphanides G, Reinberg D (2002) A unified theory of gene expression. Cell 108:439–451

    Article  CAS  PubMed  Google Scholar 

  • Padmaja MV, Jayaraman M, Srinivasan AV, Srisailapathy CR, Ramesh A (2012) PARK2 gene mutations in early onset Parkinson’s disease patients of South India. Neurosci Lett 523:145–147

    Article  CAS  PubMed  Google Scholar 

  • Park JD, Chung YH, Kim CY, Ha CS, Yang SO, Khang H et al (2007) Comparison of high MRI T1 signals with manganese concentration in brains of cynomolgus monkeys after 8 months of stainless steel welding-fume exposure. Inhal Toxicol 19:965–971

    Article  CAS  PubMed  Google Scholar 

  • Periquet M, Latouche M, Lohmann E, Rawal N, De Michele G, Ricard S, Teive H, Fraix V, Vidailhet M, Nicholl D, Barone P (2003) Parkin mutations are frequent in patients with isolated early-onset parkinsonism. Brain 126:1271–1278

    Article  PubMed  Google Scholar 

  • Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen F, Gu Y, Hasegawa H, Salehi-Rad S, Wang L, Rogaeva E, Fraser P, Robinson B, St George-Hyslop P, Tandon A (2005) Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 280:34025–34032

    Article  CAS  PubMed  Google Scholar 

  • Pickrell AM, Youle RJ (2014) The Roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s Disease. Neuron 85:257–273

    Article  Google Scholar 

  • Racette BA, Criswella SR, Lundin JI, Hobson A, Seixas N, Kotzbauer PT, Evanoff BA, Perlmutter JS, Zhang J, Sheppard L, Checkoway H (2012) Increased risk of parkinsonism associated with welding exposure. Neurotoxicology 33:1356–1361. doi:10.1016/j.neuro.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  • Rochet JC, Hay BA, Guo M (2012) Molecular insights into Parkinson’s disease. Prog Mol Biol Transl Sci 107:125–188. doi:10.1016/B978-0-12-385883-2.00011-4

    Article  CAS  PubMed  Google Scholar 

  • Roede JR, Hansen JM, Go YM, Jones D (2011) Maneb and paraquat-mediated neurotoxicity: involvement of peroxiredoxin/thioredoxin system. Toxicol Sci 121:368–375. doi:10.1093/toxsci/kfr058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth JA, Garrick MD (2003) Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem Pharmacol 66:1–13

    Article  CAS  PubMed  Google Scholar 

  • Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T, Watanabe M, Takeda A, Tomiyama H, Nakashima K, Hasegawa K, Obata F, Yoshikawa T, Kawakami H, Nakamura Y, Toda T (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41:1303–1307

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109

    Article  CAS  PubMed  Google Scholar 

  • Schnekenburger M, Talaska G, Puga A (2007) Chromium cross-links histone deacetylase 1-DNA methyltransferase complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Mol Cell Biol 27:7089–7101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settivari R, VanDuyn N, LeVora J, Nass R (2013) The Nrf2/SKN-1-dependent glutathione S-transferase p homologue GST-1 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of manganism. Neurotoxicology 38:51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Pervez S (2005) Toxic metals status in human blood and breast milk samples in an integrated steel plant environment in central India. Environ Geochem Health 27:39–45

    Article  CAS  PubMed  Google Scholar 

  • Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, Casari G (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive Parkinsonism. Hum Mol Genet 14:3477–3492

    Article  CAS  PubMed  Google Scholar 

  • Stephenson AP, Schneider JA, Nelson BC, Atha DH, Jain A, Soliman KF, Aschner M, Mazzio E, Reams R (2013) Manganese-induced oxidative DNA damage in neuronal SHSY5Y cells: attenuation of thymine base lesions by glutathione and N-acetylcysteine. Toxicol Lett 218:299–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamm C, Sabri F, Ceccatelli S (2008) Mitochondrial-mediated apoptosis in neural stem cells exposed to manganese. Toxicol Sci 102:310–320

    Article  Google Scholar 

  • Tarale P, Chakrabarti T, Sivanesan S et al (2016) Potential role of epigenetic mechanism in manganese induced neurotoxicity. Biomed Res Int 2016:1–18. doi:10.1155/2016/2548792

    Article  Google Scholar 

  • Trempe JF, Sauvé V, Grenier K, Seirafi M, Tang MY, Ménade M, Al-Abdul-Wahid S, Krett J, Wong K, Kozlov G, Nagar B, Fon EA, Gehring K (2013) Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340:1451–1455

    Article  CAS  PubMed  Google Scholar 

  • WHO (2006) Guidelines for drinking-water quality [electronic resource]: incorporating first addendum. Available: http://www.who.int/water_sanitation_health/dwq/gdwq0506begin.pdf. Accessed 26 Jan 2007

  • Yang N, Wei Y, Wang T, Guo J, Sun Q, Hu Y, Yan X, Zhu X, Tang B, Xu Q (2016) Genome-wide analysis of DNA methylation during antagonism of DMOG to MnCl2-induced cytotoxicity in the mouse substantia nigra. Sci Rep 6:28933. doi:10.1038/srep28933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Kanthasamy A, Anantharam VKA (2011) Effects of manganese on tyrosine hydroxylase (TH) activity and TH-phosphorylation in a dopaminergic neural cell line. Toxicol Appl Pharmacol 254:65–71. doi:10.1016/j.taap.2010.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to CSIR-NEERI, Nagpur, India, for providing the necessary facilities. Authors are grateful to integrated NextGen approaches in health, disease and environmental toxicity (INDEPTH) networking project (BSC 0111) for providing necessary funding and Institutional Knowledge Resource Center (KRC) No. KRC/2016/SEP/EHD/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saravanadevi Sivanesan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarale, P., Sivanesan, S., Daiwile, A.P. et al. Global DNA methylation profiling of manganese-exposed human neuroblastoma SH-SY5Y cells reveals epigenetic alterations in Parkinson’s disease-associated genes. Arch Toxicol 91, 2629–2641 (2017). https://doi.org/10.1007/s00204-016-1899-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1899-0

Keywords

Navigation