Skip to main content

Advertisement

Log in

A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Metal oxide nanoparticles in sunscreens provide broad-spectrum ultraviolet protection to skin. All studies to assess dermal penetration of nanoparticles have unanimously concluded that the overwhelming majority of nanoparticles remain on the outer surface of the skin. However, possibly due to many different experimental protocols in use, conclusions over the potential penetration to viable skin are mixed. Here, we review several factors that may influence experimental results for dermal penetration including the species studied (human, or animal model), size and coating of the metal oxide nanoparticles, composition of the sunscreen formulation, site of sunscreen application, dose and number of applications, duration of the study, types of biological samples analysed, methods for analysing samples, exposure to UV and skin flexing. Based on this information, we suggest an appropriate research agenda involving international collaboration that maximises the potential for dermal absorption of nanoparticles, and their detection, under normal conditions of sunscreen use by humans. If results from this research agenda indicate no absorption is observed, then concerns over adverse health effects from the dermal absorption of nanoparticles in sunscreens may be allayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benabdellah F, Seyer A, Quinton L, Touboul D, Brunelle A, Laprévote O (2010) Mass spectrometry imaging of rat brain sections: nanomolar sensitivity with MALDI versus nanometer resolution by TOF-SIMS. Anal Bioanal Chem 396:151–162

    Article  CAS  PubMed  Google Scholar 

  • Bennat C, Muller-Goymann CC (2000) Skin penetration and stabilisation of formulations containing microfine titanium dioxide and a physical UV filter. Int J Cosmet Sci 22:271–283

    Article  CAS  PubMed  Google Scholar 

  • Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K et al (2006) The potential risks of nanomaterials: a review conducted out for ECETOC. Part Fibre Toxicol. doi:10.1186/1743-8977-3-11

    PubMed Central  PubMed  Google Scholar 

  • Carlotti ME, Ugazio E, Sapino S, Fenoglio I, Greco G, Fubini B (2009) Role of particle coating in controlling skin damage photoinduced by titania nanoparticles. Free Radic Res 43:312–322

    Article  CAS  PubMed  Google Scholar 

  • Casey PS, Rossouw CJ, Boskovic S, Lawrence KA, Turney TW (2006) Incorporation of dopants into the lattice of ZnO nanoparticles to control photoactivity. Superlattices Microstruct 39:97–106

    Article  CAS  Google Scholar 

  • Chan TCK (2005) Percutaneous penetration enhancers: an update. In: Proceedings 9th biennial conference of perspectives in percutaneous penetration. 13 April 2004, La Grande-Motte, France, pp 18–23

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Udalagama CNB, Chen C-B, Bettiol AA, Pickard DS, Venkatesan T, Watt F (2011) Whole-cell imaging at nanometer resolutions using fast and slow focused helium ions. Biophys J 101:1788–1793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cormick C, Wright P (2012) Australians risking skin cancer to avoid nanoparticles. http://www.tga.gov.au/pdf/review-sunscreens-060220.pdf

  • Croteau M-N, Dybowska A, Luoma S, Valsami- Jones E (2011) A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures. Nanotoxicology 5:79–90

    Article  CAS  PubMed  Google Scholar 

  • Darvin ME, Konig K, Kellner-Hoefer M, Breunig HG, Werncke W, Meinke MC, Patzelt A, Sterry W, Lademann J (2012) Safety assessment by multiphoton fluorescence/second harmonic generation/hyper-Rayleigh scattering tomography of ZnO nanoparticles used in cosmetic products. Skin Pharmacol Physiol 25:219–226

    Article  CAS  PubMed  Google Scholar 

  • Degueldre C, Favarger P-Y (2003) Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf A Physicochem Eng Asp 217:137–142

    Article  CAS  Google Scholar 

  • Dodd AC, McKinley AJ, Saunders M, Tsuzuki T (2006) Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. J Nanopart Res 8:43–51

    Article  CAS  Google Scholar 

  • Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H et al (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418:87–90

    Article  CAS  PubMed  Google Scholar 

  • Edwards SA, Ratner MA (2007) Nano-hype: the truth behind the nanotechnology buzz and the nanotech pioneers: where are they taking us? Phys Today 60:60–62

    Google Scholar 

  • Environmental Working Group (2009) Sunscreen investigation. Section 4. Nanotechnology & sunscreens. Washington, DC: EWG. www.ewg.org/cosmetics/report/sunscreen09/investigation/Nanotechnology-Sunscreens. Accessed 24 March 2012

  • Environmental Working Group (2014) Guide to sunscreens. http://www.ewg.org/2014sunscreen/about-the-sunscreens. Accessed 8 January 2015

  • European Cosmetic Toiletry and Perfumery Association (1994) COLIPA sun protection factor (SPF) test method. October Ref. 94/289. Brussels: COLIPA

  • Filipe P, Silva JN, Silva R, Cirne de Castro JL, Marques Gomes M, Alves LC et al (2009) Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Physiol 22:266–275

    Article  CAS  PubMed  Google Scholar 

  • Food and Drug Administration (2011) Part 352. Sunscreen drug products for over-the-counter human use. Washington, DC: FDA. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs Accessed 12 April 2012

  • Gontier E, Ynsa M-D, Biro T, Hunyadi J, Kiss B, Gaspar K, Pinheiro T, Silva J-N, Filipe P, Stachura J, Dabros W, Reinert T, Butz T, Moretto P, Surleve-Bazeille J-E (2008) Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and microscope study. Nanotoxicology 2:218–231

    Article  Google Scholar 

  • Gottbrath S, Mueller-Goymann CC (2004) Penetration and visualisation of titanium dioxide microparticles in human stratum corneum: effect of different formulations on the penetration of titanium dioxide. SOFW J 129(11–14):16–17

    Google Scholar 

  • Green AC, Williams GM, Logan V, Strutton GM (2010) Reduced melanoma after regular sunscreen use: randomized trial follow-up. J Clin Oncol 29:257–263

    Article  PubMed  Google Scholar 

  • Gulson B, Wong H (2006) Stable isotope tracing: a way forward for nanotechnology. Environ Health Perspect 114:1486–1488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gulson B, McCall M, Korsch M, Gomez L, Casey P, Oytam Y et al (2010) Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci 118:140–149

    Article  CAS  PubMed  Google Scholar 

  • Gulson B, Wong H, Korsch M, Gomez L, Casey P, McCall M et al (2012) Comparison of dermal absorption of zinc from different sunscreen formulations and differing UV exposure based on stable isotope tracing. Sci Total Environ 420:313–318

    Article  CAS  PubMed  Google Scholar 

  • Holbrook K, Odland GF (1974) Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. J Invest Dermatol 62:415–422

    Article  CAS  PubMed  Google Scholar 

  • Hong R, Pan T, Qian J, Hongzhong L (2006) Synthesis and surface modification of ZnO nanoparticles. Chem Eng J 119:71–81

    Article  CAS  Google Scholar 

  • Inman AO, Landsiedel R, Wiench K, Riviere JE, Schulte S, Monteiro-Riviere NA (2010) Assessment of UVB-damaged skin in vivo with sunscreen formulations containing titanium and nanoparticles. Toxicologist (Abstract: 2067)

  • James SA, Feltis BN, de Jonge MD, Sridhar M, Kimpton JA, Altissimo M, Mayo S, Zheng C, Hastings A, Howard DL, Paterson DJ, Wright PF, Moorhead GF, Turney TW, Fu J (2013) Quantification of ZnO nanoparticle uptake, distribution, and dissolution within individual human macrophages. ACS Nano 7:10621–10635

    Article  CAS  PubMed  Google Scholar 

  • Jaroenworaluck A, Sunsaneeyametha W, Kosachan N, Stevens R (2006) Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications. Surf Interface Anal 38:473–477

    Article  CAS  Google Scholar 

  • Kullavanijaya P, Lim HW (2005) Photoprotection. J Am Acad Dermatol 52:937–962

    Article  PubMed  Google Scholar 

  • Labouta HI, Schneider M (2013) Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomedicine 9:39–54

    Article  CAS  PubMed  Google Scholar 

  • Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G et al (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Physiol 12:247–256

    Article  CAS  Google Scholar 

  • Lademann J, Schanzer S, Richter H, Pelchrzim RV, Zastrom L, Golz K et al (2004) Sunscreen application at the beach. J Cosmet Dermatol 3:62–68

    Article  CAS  PubMed  Google Scholar 

  • Lademann J, Richter H, Schaefer UF, Blume-Peytavi U, Teichmann A, Otberg N, Sterry W (2006) Hair follicles: a long term reservoir for drug delivery. Skin Pharmacol Physiol 19:232–236

    Article  CAS  PubMed  Google Scholar 

  • Larner F, Dogra Y, Dybowska A, Fabrega J, Stolpe B, Bridgestock LJ, Goodhead R, Weiss DJ, Moger J, Lead JR, Valsami-Jones E, Tyler CR, Galloway TS, Rehkamper M (2012) Tracing bioavailability of ZnO nanoparticles using stable isotope labeling. Environ Sci Technol 46:12137–12145

    Article  CAS  PubMed  Google Scholar 

  • Larner F, Gulson B, McCall M, Oytam Y, Rehkamper M (2014) An inter-laboratory comparison of high precision stable isotope ratio measurements for nanoparticle tracing in biological samples. J Anal At Spectrom. doi:10.1039/c3ja50322d

    Google Scholar 

  • Leite-Silva VR, Le Lamer M, Sanchez WY, Liu DC, Sanchez WH, Morrow I, Martin D, Silva HDT, Prow TW, Grice JE, Roberts MS (2013) The effect of formulation on the penetration of coated and uncoated zinc oxide nanoparticles into the viable epidermis of human skin in vivo. Eur J Pharm Biopharm 84:297–308

    Article  CAS  PubMed  Google Scholar 

  • Lekki J, Stachura Z, Dabros W, Stachura J, Menzel F, Reinert T et al (2007) On the follicular pathway of percutaneous uptake of nanoparticles: ion microscopy and autoradiography studies. Nucl Instrum Methods Phys Res, Sect B 260:174–177

    Article  CAS  Google Scholar 

  • Lewicka ZA, Benedetto AF, Benoit DN, Yu WW, Fortner JD, Colvin VL (2011) The structure, composition, and dimensions of TiO2 and ZnO nanomaterials in commercial sunscreens. J Nanopart Res 13:3607–3617

    Article  CAS  Google Scholar 

  • Lin LL, Grice JE, Butler MK, Zvyagin AV, Becker W, Robertson TA et al (2011) Time-correlated single photon counting for simultaneous monitoring of zinc oxide nanoparticles and NAD(P)H in intact and barrier-disrupted volunteer skin. Pharm Res 28:2920–2930

    Article  CAS  PubMed  Google Scholar 

  • Magnusson BM, Walters KA, Roberts MS (2001) Veterinary drug delivery: potential for skin penetration enhancement. Adv Drug Deliv Rev 50:205–227

    Article  CAS  PubMed  Google Scholar 

  • Mavon A, Miquel C, Lejeune O, Payre B, Moretto P (2007) In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol 20:10–20

    Article  CAS  PubMed  Google Scholar 

  • Menzel F, Reinet T, Vogt J, Butz T (2004) Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION. Nucl Instrum Methods Phys Res B 219–220:82–86

    Article  Google Scholar 

  • Millington KR, Osmond MJ, McCall MJ (2014) Detecting free radicals in sunscreens exposed to UVA radiation using chemiluminescence. J Photochem Photobiol B Biol 133:27–38

    Article  CAS  Google Scholar 

  • Monteiro-Riviere NA (2010) Structure and function of skin. In: Monteiro-Riviere NA (ed) Toxicology of the skin. Informa healthcare, New York, pp 1–18

    Google Scholar 

  • Monteiro-Riviere NA, Baroli B (2010) Nanomaterial penetration. In: Monteiro-Riviere NA (ed) Toxicology of the skin. Informa healthcare, New York, pp 333–346

    Google Scholar 

  • Monteiro-Riviere NA, Riviere JE (2005) The pig as a model for human skin research. In: Swindle M, Bouchard GF (eds) Swine in biomedical research: update on animal models. Sinclair Research Center, Columbia, pp 17–22

    Google Scholar 

  • Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE (2011) Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci 123:264–280

    Article  CAS  PubMed  Google Scholar 

  • Nagakawa Y, Wakuri S, Sakamoto K, Tanaka N (1997) The photogenotoxicity of titanium dioxide particles. Mutation Res 394:125–132

    Article  Google Scholar 

  • Nam SY, Ricles LM, Suggs LJ, Emelianov SY (2012) In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers. PLoS One 7(5):e37267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nanoderm (2007) Quality of skin as a barrier to ultra-fine particles: final report. QLK4-CT-2002-02678. Leipzig: European Commission. http://www.uni-leipzig.de/~nanoderm/Downloads/Nanoderm_Final_Report.pdf

  • Nash JF (2006) Human safety and efficacy of ultraviolet filters and sunscreen products. Dermatol Clin 24:35–51

    Article  CAS  PubMed  Google Scholar 

  • Newman MD, Stotland M, Ellis JI (2009) The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 61:685–692

    Article  CAS  PubMed  Google Scholar 

  • Nohynek GJ, Lademan J, Ribaud C, Roberts MS (2007) Grey goo on the skin? Nanotechonology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–277

    Article  CAS  PubMed  Google Scholar 

  • Nohynek GJ, Dufour EK, Roberts MS (2008) Nanotechnology, cosmetics and the skin: is there a health risk. Skin Pharmacol Physiol 21:136–149

    Article  CAS  PubMed  Google Scholar 

  • Nohynek GJ, Antignac E, Re T, Toutian H (2010) Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 243:239–259

    Article  CAS  PubMed  Google Scholar 

  • OECD (2007) Organisation for Economic Cooperation and Development: Sponsorship Programme for the testing of manufactured nanomaterials. http://www.oecd.org/document/47/0,3746,en_2649_37015404_41197295_1_1_1_1,00.html

  • Osmond MJ, McCall MJ (2010) Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 4:15–41

    Article  CAS  PubMed  Google Scholar 

  • Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J (2004) Variations of hair follicle size and distribution in different body sites. J Invest Dermatol 122:14–19

    Article  CAS  PubMed  Google Scholar 

  • Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF (2011) Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem 83:9361–9369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pflücker F, Wendel V, Hohenberg H, Gärtner E, Witt T, Pfeiffer S et al (2001) The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharm Physiol 14:92–97

    Article  Google Scholar 

  • Pinheiro T, Allon J, Alves LC, Filipe P, Silva JN (2007) The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across the skin. Nuclear Instrum Methods Phys Res B 260:119–123

    Article  CAS  Google Scholar 

  • Poland CA, Read SAK, Varet J, Carse G, Christensen FM, Hankin SM (2013) Dermal absorption of nanoparticles. Danish Environmental Protection Agency, Environmental project No. 1504. http://www2.mst.dk/Udgiv/publications/2013/09/978-87-93026-50-6.pdf

  • Popov AP, Lademann J, Priezzhev AV, Myllyla R (2005a) Effect of size of TiO2 nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin. J Biomed Opt 10:1–9

    Article  Google Scholar 

  • Popov AP, Priezzhev AV, Lademann J, Myllyla R (2005b) TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens. J Phys D Appl Phys 38:2564–2570

    Article  CAS  Google Scholar 

  • Prow TW, Monteiro-Riviere NA, Inman AO, Grice JE, Chen X, Zhao X, Sanchez WH, Gierden A, Kendall MA, Zvyagin AV, Erdmann D, Riviere JE, Roberts MS (2012) Quantum dot penetration into viable human skin. Nanotoxicology 6:173–185

    Article  CAS  PubMed  Google Scholar 

  • Raphael AP, Sundh D, Grice JE, Roberts MS, Soyer HP, Prow TW (2013) Zinc oxide nanoparticle removal from wounded human skin. Nanomedicine 8:1751–1761

    Article  CAS  PubMed  Google Scholar 

  • Reed RB, Higgins CP, Westerhoff P, Tadjiki S, Ranville JF (2012) Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. J Anal At Spectrom 27:1093–1100

    Article  CAS  Google Scholar 

  • Roberts MS, Roberts MJ, Robertson TA, Sanchez W, Thӧrling C, Zou U et al (2008) In vitro and in vivo imaging of xenobiotic transport in human skin and in the rat liver. J Biophotonics 1:478–493

    Article  CAS  PubMed  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91:159–165

    Article  CAS  PubMed  Google Scholar 

  • Sadreih N, Wokovich AM, Gopee NV, Zheng J, Haines D, Parmiter D et al (2010) Lack of significant penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicol Sci 115:156–166

    Article  Google Scholar 

  • Samontha A, Shiowatana J, Siripinyanond A (2011) Particle size characterization of titanium dioxide in sunscreen products using sedimentation field-flow fractionation-inductivity coupled plasma-mass spectrometry. Anal Bioanal Chem 399:973–978

    Article  CAS  PubMed  Google Scholar 

  • Sandby-Moller J, Poulsen T, Wulf HC (2003) Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol 83:410–413

    Article  PubMed  Google Scholar 

  • Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W et al (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9:495–509

    Article  CAS  PubMed  Google Scholar 

  • Schmidt J, Vogelsberger W (2009) Aqueous long-term solubility of titania nanoparticles and titanium(IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. J Solut Chem 38:1267–1282

    Article  CAS  Google Scholar 

  • Schmid-Wendtner MH, Korting HC (2006) The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol 19:296–302

    Article  PubMed  Google Scholar 

  • Schülz J, Hohenberg F, Pflücker F, Gartner B, Will T, Pfeiffer S et al (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev 54:S157–S163

    Article  PubMed  Google Scholar 

  • Scientific Committee on Consumer Safety (2012a) Guidance on the safety assessment of nanomaterials in cosmetics, SCCS/1484/12, Health & Consumer Protection Directorate-General, Brussels. http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_005.pdf

  • Scientific Committee on Consumer Safety (2012b) The SCCS’s notes of guidance for the testing of cosmetic substances and their safety evaluation. 8th revision. The SCCS adopted this opinion at its 17th plenary meeting of 11 December 2012. SCCS/1501/12. http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_006.pdf

  • Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Letters 185:211–218

    Article  CAS  Google Scholar 

  • Su JL, Wang B, Wilson KE, Bayer CL, Chen Y-S, Kim S et al (2010) Advances in clinical and biomedical applications of photoacoustic imaging. Expert Opin Med Diagn 4:497–510

    Article  PubMed Central  PubMed  Google Scholar 

  • Szikszai Z, Zs Kertesz, Bodnar E, Borbiro I, Angyal A, Csedreki L, Furu E, Szoboszlai Z, Kiss AZ, Hunyadi J (2011) Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into human skin affected by atopic dermatitis. Nuclear Instrum Methods Phys Res B 269:2278–2280

    Article  CAS  Google Scholar 

  • Tan MH, Commens CA, Burnett L, Snitch P (1996) A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas J Dermatol 37:185–187

    Article  CAS  PubMed  Google Scholar 

  • TEGOR Sun T 805 (2008) http://www.finecon.sk/admin/pdf/DS_TEGO_Sun_T_805_e.pdf Accessed 15 June 2012

  • Therapeutic Goods Administration (2006) Safety of sunscreens containing nanoparticles of zinc oxide or titanium dioxide. Canberra: Australian Government. www.tga.gov.au/npmeds/sunscreen-zotd.htm Accessed 14 Feb 2012

  • Thomas T, Thomas K, Sadrieh N, Savage N, Adair P, Bronaugh R (2006) Research strategies for safety evaluation of nanomaterials, part VII: evaluating consumer exposure to nanoscale materials. Toxicol Sci 91:14–19

    Article  CAS  PubMed  Google Scholar 

  • Tiano L, Armeni T, Venditti E, Barucca G, Mincarelli L, Damiani E (2010) Modified TiO2 particles differentially affect human skin fibroblasts exposed to UVA light. Free Radic Biol Med 49:408–415

    Article  CAS  PubMed  Google Scholar 

  • Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellov M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:795–821

    Article  CAS  PubMed  Google Scholar 

  • Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K et al (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111:1202–1208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tran DT, Salmon R (2011) Potential photocarcinogenic effects of nanoparticle sunscreens. Australas J Dermatol 52:1–6

    Article  PubMed  Google Scholar 

  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789

    Article  CAS  PubMed  Google Scholar 

  • Vasikaran S, Eastell R, Bruyère O, Foldes AJ, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T, Wahl DA, Cooper C, Kanis JA (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22:391–420

    Article  CAS  PubMed  Google Scholar 

  • Wakefield G, Lipscomb S, Holland E, Knowland J (2004) The effects of manganese doping on UVA absorption and free radical generation of micronised titanium dioxide and its consequences for the photostability of UVA absorbing organic sunscreen components. Photochem Photobiol Sci 3:648–652

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tsuzuki T, Tang B, Cizek P, Sun L, Wang X (2010) Synthesis of silica-coated ZnO nanocomposite: the resonance structure of polyvinyl pyrrolidone (PVP) as a coupling agent. Colloid Polym Sci 288:1705–1711

    Article  CAS  Google Scholar 

  • Warheit DB, Borm PJ, Hennes C, Lademann J (2007) Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal Toxicol 19:631–643

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2006) Dermal absorption. EHC 235. WHO, Geneva

    Google Scholar 

  • Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L et al (2009) Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett 191:1–8

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative Ssss properties. ACS Nano 2:2121–2134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin H, Casey PS, McCall MJ, Fenech M (2010) Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir 26:15399–15408

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Coleman VA, Casey PS, Angel B, Catchpoole HJ, Waddington L, McCall MJ (2015) A comparative study of the physical and chemical properties of nano-sized ZnO particles from multiple batches of three commercial products. J Nanopart Res 17:96. doi:10.1007/S11051-014-2851-y

    Article  Google Scholar 

  • Zhang J, Dauphas N, Davis AM, Pourmand A (2011) A new method for MC-ICPMS measurement of titanium isotopic composition: identification of correleated isotope anomalies in meteorites. J Anal At Spectrom 26:2197–2205

    Article  CAS  Google Scholar 

  • Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS (2008) Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt 13:064031-1–064031-9

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sally Tinkle (Science and Technology Policy Institute, previously National Nanotechnology Coordination Office, USA) for suggesting the concept of a defining study to be performed in two or more laboratories, Dr. Andrew Bartholomaeus (FSANZ, previously TGA, Australia) for suggesting that the formulation include a penetration enhancer, Professor Andrew Maynard (Risk Science Centre, School of Public Health, The University of Michigan) and Paul Howard (National Center for Toxicological Research, U.S. Food and Drug Administration) for their insightful and constructive comments, and Mary Salter, the phlebotomist for the Sydney human studies, who unfortunately passed away in November 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Gulson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulson, B., McCall, M.J., Bowman, D.M. et al. A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies. Arch Toxicol 89, 1909–1930 (2015). https://doi.org/10.1007/s00204-015-1564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1564-z

Keywords

Navigation