Skip to main content
Log in

Potassium currents inhibition by gambierol analogs prevents human T lymphocyte activation

  • Immunotoxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Gambierol is a marine polycyclic ether toxin, produced along with ciguatoxin congeners by the dinoflagellate Gambierdiscus toxicus. We have recently reported that two truncated skeletal analogs of gambierol comprising the EFGH- and BCDEFGH-rings of the parent compound showed similar potency to gambierol on voltage-gated potassium channels (Kv) inhibition in neurons. Gambierol and its truncated analogs share the main crucial elements for biological activity, which are the C28=C29 double bond within the H-ring and the unsaturated side chain. Since Kv channels are critical for the regulation of calcium signaling, proliferation, secretion and migration in human T lymphocytes, we evaluated the activity of both the tetracyclic and heptacyclic analogs of gambierol on potassium currents in resting T lymphocyte and their effects on interleukin-2 (IL-2) release and gene expression in activated T lymphocytes. The results presented in this work clearly demonstrate that both truncated analogs of gambierol inhibit Kv channels present in resting T lymphocytes (Kv1.3) and prevented lymphocyte activation by concanavalin A. The main effects of the heptacyclic and tetracyclic analogs of gambierol in human T cells are: (1) inhibition of potassium channels in resting and concanavalin-activated T cells in the nanomolar range, (2) inhibition of IL-2 release from concanavalin-activated T cells and (3) negatively affect the expression of genes involved in cell proliferation and immune response observed in concanavalin-activated lymphocytes. These results together with the lack of toxicity in this cellular model, indicates that both analogs of gambierol have additional potential for the development of therapeutic tools in autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

4-AP:

4-Aminopyridine

TEA:

Tetraethylammonium

Kv:

Voltage-gated potassium channel

IKCa:

Calcium-activated potassium channels

EDTA:

Ethylenediaminetetraacetic acid

FBS:

Fetal bovine serum

IL-2:

Human interleukin 2

TRAM-34:

1-[(2-Chlorophenyl)diphenylmethyl]-1H-pyrazole

Con:

Concanavalin A

MTT:

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

References

  • Alfonso A, Roman Y, Vieytes MR et al (2005) Azaspiracid-4 inhibits Ca2+ entry by stored operated channels in human T lymphocytes. Biochem Pharmacol 69(11):1627–1636

    Article  CAS  PubMed  Google Scholar 

  • Alonso E, Fuwa H, Vale C et al (2012) Design and synthesis of skeletal analogues of gambierol: attenuation of amyloid-β and tau pathology with voltage-gated potassium channel and N-methyl-D-aspartate receptor implications. J Am Chem Soc 134(17):7467–7479

    Article  CAS  PubMed  Google Scholar 

  • Beeton C, Wulff H, Singh S et al (2003) A novel fluorescent toxin to detect and investigate Kv1.3 channel up-regulation in chronically activated T lymphocytes. J Biol Chem 278(11):9928–9937

    Article  CAS  PubMed  Google Scholar 

  • Beeton C, Wulff H, Standifer NE et al (2006) Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA 103(46):17414–17419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bird JJ, Brown DR, Mullen AC et al (1998) Helper T cell differentiation is controlled by the cell cycle. Immunity 9(2):229–237

    Article  CAS  PubMed  Google Scholar 

  • Bodendiek SB, Mahieux C, Hansel W, Wulff H (2009) 4-Phenoxybutoxy-substituted heterocycles: a structure–activity relationship study of blockers of the lymphocyte potassium channel Kv1.3. Eur J Med Chem 44(5):1838–1852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradding P, Wulff H (2009) The K+ channels K(Ca)3.1 and K(v)1.3 as novel targets for asthma therapy. Br J Pharmacol 157(8):1330–1339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231(1):59–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cahalan MD, Chandy KG, DeCoursey TE, Gupta S (1985) A voltage-gated potassium channel in human T lymphocytes. J Physiol 358:197–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chandy KG, Cahalan M, Pennington M, Norton RS, Wulff H, Gutman GA (2001) Potassium channels in T lymphocytes: toxins to therapeutic immunosuppressants. Toxicon 39(9):1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD (2004) K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci 25(5):280–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuypers E, Abdel-Mottaleb Y, Kopljar I et al (2008) Gambierol, a toxin produced by the dinoflagellate Gambierdiscus toxicus, is a potent blocker of voltage-gated potassium channels. Toxicon 51(6):974–983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  • DeCoursey TE, Chandy KG, Gupta S, Cahalan MD (1984) Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307(5950):465–468

    Article  CAS  PubMed  Google Scholar 

  • Ellisen LW, Palmer RE, Maki RG et al (2001) Cascades of transcriptional induction during human lymphocyte activation. Eur J Cell Biol 80(5):321–328

    Article  CAS  PubMed  Google Scholar 

  • Fanger CM, Rauer H, Neben AL et al (2001) Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J Biol Chem 276(15):12249–12256

    Article  CAS  PubMed  Google Scholar 

  • Frazer KA, Ueda Y, Zhu Y et al (1997) Computational and biological analysis of 680 kb of DNA sequence from the human 5q31 cytokine gene cluster region. Genome Res 7(5):495–512

    CAS  PubMed  Google Scholar 

  • Fuwa H, Kainuma N, Tachibana K, Sasaki M (2002) Total synthesis of (−)-gambierol. J Am Chem Soc 124(50):14983–14992

    Article  CAS  PubMed  Google Scholar 

  • Fuwa H, Kainuma N, Satake M, Sasaki M (2003) Synthesis and biological evaluation of gambierol analogues. Bioorg Med Chem Lett 13(15):2519–2522

    Article  CAS  PubMed  Google Scholar 

  • Fuwa H, Kainuma N, Tachibana K, Tsukano C, Satake M, Sasaki M (2004) Diverted total synthesis and biological evaluation of gambierol analogues: elucidation of crucial structural elements for potent toxicity. Chemistry 10(19):4894–4909

    Article  CAS  PubMed  Google Scholar 

  • Ghanshani S, Wulff H, Miller MJ et al (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 275(47):37137–37149

    Article  CAS  PubMed  Google Scholar 

  • Glimcher LH, Murphy KM (2000) Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev 14(14):1693–1711

    CAS  PubMed  Google Scholar 

  • Hu L, Gocke AR, Knapp E et al (2012) Functional blockade of the voltage-gated potassium channel Kv1.3 mediates reversion of T effector to central memory lymphocytes through SMAD3/p21cip1 signaling. J Biol Chem 287(2):1261–1268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu L, Wang T, Gocke AR et al (2013) Blockade of Kv1.3 potassium channels inhibits differentiation and granzyme B secretion of human CD8+ T effector memory lymphocytes. PLoS One 8(1):e54267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang da W, Sherman BT, Zheng X, et al. (2009b) Extracting biological meaning from large gene lists with DAVID. Curr Protoc Bioinform Chapter 13:Unit 13 11

  • Huang SK, Xiao HQ, Kleine-Tebbe J et al (1995) IL-13 expression at the sites of allergen challenge in patients with asthma. J Immunol 155(5):2688–2694

    CAS  PubMed  Google Scholar 

  • June CH, Jackson KM, Ledbetter JA, Leiden JM, Lindsten T, Thompson CB (1989) Two distinct mechanisms of interleukin-2 gene expression in human T lymphocytes. J Autoimmun 2(Suppl):55–65

    Article  PubMed  Google Scholar 

  • Kopljar I, Labro AJ, Cuypers E et al (2009) A polyether biotoxin binding site on the lipid-exposed face of the pore domain of Kv channels revealed by the marine toxin gambierol. Proc Natl Acad Sci USA 106(24):9896–9901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kopljar I, Labro AJ, de Block T, Rainier JD, Tytgat J, Snyders DJ (2013) The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state. J Gen Physiol 141(3):359–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lam J, Wulff H (2011) The lymphocyte potassium channels Kv1.3 and KCa3.1 as targets for immunosuppression. Drug Dev Res 72(7):573–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Maes T, Joos GF, Brusselle GG (2012) Targeting interleukin-4 in asthma: lost in translation? Am J Respir Cell Mol Biol 47(3):261–270

    Article  CAS  PubMed  Google Scholar 

  • Naseer T, Minshall EM, Leung DY et al (1997) Expression of IL-12 and IL-13 mRNA in asthma and their modulation in response to steroid therapy. Am J Respir Crit Care Med 155(3):845–851

    Article  CAS  PubMed  Google Scholar 

  • Nicolaou SA, Neumeier L, Steckly A, Kucher V, Takimoto K, Conforti L (2009) Localization of Kv1.3 channels in the immunological synapse modulates the calcium response to antigen stimulation in T lymphocytes. J Immunol 183(10):6296–6302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Garra A (1998) Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8(3):275–283

    Article  PubMed  Google Scholar 

  • Panyi G, Varga Z, Gaspar R (2004) Ion channels and lymphocyte activation. Immunol Lett 92(1–2):55–66

    Article  CAS  PubMed  Google Scholar 

  • Perez S, Vale C, Alonso E et al (2012) Effect of gambierol and its tetracyclic and heptacyclic analogues in cultured cerebellar neurons: a structure–activity relationships study. Chem Res Toxicol 25(9):1929–1937

    Article  CAS  PubMed  Google Scholar 

  • Rael EL, Lockey RF (2011) Interleukin-13 signaling and its role in asthma. World Allergy Organ J 4(3):54–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rudd CE (1999) Adaptors and molecular scaffolds in immune cell signaling. Cell 96(1):5–8

    Article  CAS  PubMed  Google Scholar 

  • Saeed AI, Sharov V, White J et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34(2):374–378

    CAS  PubMed  Google Scholar 

  • Saeed AI, Bhagabati NK, Braisted JC et al (2006) TM4 microarray software suite. Methods Enzymol 411:134–193

    CAS  PubMed  Google Scholar 

  • Satake M, Murata M, Yasumoto T (1993) Gambierol: a new toxic polyether compound isolated from the marine dinoflagellate Gambierdiscus toxicus. J Am Chem Soc 115(1):361–362

    Article  CAS  Google Scholar 

  • Varga Z, Hajdu P, Panyi G (2010) Ion channels in T lymphocytes: an update on facts, mechanisms and therapeutic targeting in autoimmune diseases. Immunol Lett 130(1–2):19–25

    Article  CAS  PubMed  Google Scholar 

  • Varga Z, Gurrola-Briones G, Papp F et al (2012) Vm24, a natural immunosuppressive peptide, potently and selectively blocks Kv1.3 potassium channels of human T cells. Mol Pharmacol 82(3):372–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wills-Karp M (2004) Interleukin-13 in asthma pathogenesis. Immunol Rev 202:175–190

    Article  CAS  PubMed  Google Scholar 

  • Wiskocil R, Weiss A, Imboden J, Kamin-Lewis R, Stobo J (1985) Activation of a human T cell line: a two-stimulus requirement in the pretranslational events involved in the coordinate expression of interleukin 2 and gamma-interferon genes. J Immunol 134(3):1599–1603

    CAS  PubMed  Google Scholar 

  • Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci USA 97(14):8151–8156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wulff H, Beeton C, Chandy KG (2003) Potassium channels as therapeutic targets for autoimmune disorders. Curr Opin Drug Discov Devel 6(5):640–647

    CAS  PubMed  Google Scholar 

  • Ying S, Meng Q, Barata LT, Robinson DS, Durham SR, Kay AB (1997) Associations between IL-13 and IL-4 (mRNA and protein), vascular cell adhesion molecule-1 expression, and the infiltration of eosinophils, macrophages, and T cells in allergen-induced late-phase cutaneous reactions in atopic subjects. J Immunol 158(10):5050–5057

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the following FEDER co-funded grants. From CDTI and Technological Funds, supported by Ministerio de Economía y Competitividad, AGL2012-40185-CO2-01 and Consellería de Cultura, Educación e Ordenación Universitaria, GRC2013-016, and through Axencia Galega de Innovación, Spain, ITC-20133020 SINTOX, IN852A 2013/16-3 MYTIGAL. From CDTI under ISIP Programme, Spain, IDI-20130304 APTAFOOD. From the European Union’s Seventh Framework Programme managed by REA – Research Executive Agency (FP7/2007-2013) under grant agreement Nos. 265409 µAQUA, 315285 CIGUATOOLS and 312184 PHARMASEA. Grants-in-Aid for Scientific Research on Priority Areas “Chemical Biology of Natural Products”: (Nos. 24102507 and 23102016) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Vale or L. M. Botana.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubiolo, J.A., Vale, C., Martín, V. et al. Potassium currents inhibition by gambierol analogs prevents human T lymphocyte activation. Arch Toxicol 89, 1119–1134 (2015). https://doi.org/10.1007/s00204-014-1299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1299-2

Keywords

Navigation