Skip to main content

Advertisement

Log in

Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Zidovudine (3′-azido-3′-deoxythymidine; AZT) is the most widely used nucleoside reverse transcriptase inhibitor for the treatment of AIDS patients and prevention of mother-to-child transmission of HIV-1. Previously, we demonstrated that AZT had significantly greater growth inhibitory effects upon the human liver carcinoma cell line HepG2 as compared to the immortalized human liver cell line THLE2. We have now used gene expression profiling to determine the molecular pathways associated with toxicity in both cell lines. HepG2 cells were incubated with 0, 2, 20, or 100 μM AZT for 2 weeks; THLE2 cells were treated with 0, 50, 500, or 2,500 μM AZT, concentrations that were equi-toxic to those used in the HepG2 cells. After the treatment, total RNA was isolated and subjected to microarray analysis. Global analysis of gene expression, with a false discovery rate ≤0.01 and a fold change ≥1.5, indicated that 6- to 70-fold more genes were differentially expressed in a significant concentration-dependent manner in HepG2 cells when compared to THLE2 cells. Comparative analysis indicated that 7 % of these genes were common to both cell lines. Among the common differentially expressed genes, 70 % changed in the same direction, most of which were associated with cell death and survival, cell cycle, cell growth and proliferation, and DNA replication, recombination, and repair. As determined by the uptake of [methyl-3H]AZT, the intracellular levels of total AZT were approximately twofold higher in THLE2 cells than in HepG2 cells. The expression of thymidine kinase 1 (TK1) and UDP-glucuronosyltransferase 2B7 (UGT2B7) genes that regulate the metabolic activation and deactivation of AZT, respectively, was increased in HepG2 cells but decreased in THLE2 cells after treatment with AZT. This differential response in AZT metabolism was confirmed by real-time PCR, western blotting, and/or enzymatic assays. These data indicate that molecular pathways involved with cell death and survival, cell cycle, cell growth and proliferation, and DNA replication, recombination, and repair are involved in the toxicities associated with AZT in both human cell lines, and that the difference in expression of TK1 and UGT2B7 in response to AZT treatment in HepG2 cells and THLE2 cells might explain why HepG2 cells are more sensitive than THLE2 cells to the toxicity of AZT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AHFS (2007) American hospital formulary service drug information. In McEvoy GK (ed) 8.18.08.20 Nucleoside and nucleotide reverse transcriptase inhibitors, zidovudine. American Society of Health-System Pharmacists, Inc.: Bethesda, MD

  • Arner ES, Eriksson S (1995) Mammalian deoxyribonucleoside kinases. Pharmacol Ther 67(2):155–186

    Article  CAS  PubMed  Google Scholar 

  • Avramis VI, Kwock R, Solorzano MM, Gomperts E (1993) Evidence of in vitro development of drug resistance to azidothymidine in T-lymphocytic leukemia cell lines (Jurkat E6-1/AZT-100) and in pediatric patients with HIV-1 infection. J Acquir Immune Defic Syndr 6(12):1287–1296

    CAS  PubMed  Google Scholar 

  • Ayers KM, Clive D, Tucker J, Walter E, Hajian G, de Miranda P (1996) Nonclinical toxicology studies with zidovudine: genetic toxicity tests and carcinogenicity bioassays in mice and rats. Fundam Appl Toxicol 32(2):148–158

    Article  CAS  PubMed  Google Scholar 

  • Barbier O, Turgeon D, Girard C et al (2000) 3′-azido-3′-deoxythimidine (AZT) is glucuronidated by human UDP-glucuronosyltransferase 2B7 (UGT2B7). Drug Metab Dispos 28(5):497–502

    CAS  PubMed  Google Scholar 

  • Barry MG, Khoo SH, Veal GJ et al (1996) The effect of zidovudine dose on the formation of intracellular phosphorylated metabolites. AIDS 10(12):1361–1367

    Article  CAS  PubMed  Google Scholar 

  • Belanger AS, Caron P, Harvey M, Zimmerman PA, Mehlotra RK, Guillemette C (2009) Glucuronidation of the antiretroviral drug efavirenz by UGT2B7 and an in vitro investigation of drug–drug interaction with zidovudine. Drug Metab Dispos 37(9):1793–1796

    Article  CAS  PubMed  Google Scholar 

  • Beringer PM, Slaughter RL (2005) Transporters and their impact on drug disposition. Ann Pharmacother 39(6):1097–1108

    Article  CAS  PubMed  Google Scholar 

  • Borojerdi JP, Ming J, Cooch C et al (2009) Centrosomal amplification and aneuploidy induced by the antiretroviral drug AZT in hamster and human cells. Mutat Res 665(1–2):67–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brinkman K, Kakuda TN (2000) Mitochondrial toxicity of nucleoside analogue reverse transcriptase inhibitors: a looming obstacle for long-term antiretroviral therapy? Curr Opin Infect Dis 13(1):5–11

    Article  CAS  PubMed  Google Scholar 

  • Brunetti I, Falcone A, Calabresi P, Goulette FA, Darnowski JW (1990) 5-Fluorouracil enhances azidothymidine cytotoxicity: in vitro, in vivo, and biochemical studies. Cancer Res 50(13):4026–4031

    CAS  PubMed  Google Scholar 

  • Collier AC, Helliwell RJA, Keelan JA, Paxton JW, Mitchell MD, Tingle MD (2003) 3′-Azido-3′-deoxythymidine (AZT) induces apoptosis and alters metabolic enzyme activity in human placenta. Toxicol Appl Pharmacol 192(2):164–173

    Article  CAS  PubMed  Google Scholar 

  • Dertinger SD, Torous DK, Tometsko KR (1996) Induction of micronuclei by low doses of azidothymidine (AZT). Mutat Res 368(3–4):301–307

    Article  CAS  PubMed  Google Scholar 

  • Dutra A, Pak E, Wincovitch S, John K, Poirier MC, Olivero OA (2010) Nuclear bud formation: a novel manifestation of Zidovudine genotoxicity. Cytogenet Genome Res 128(1–3):105–110

    Article  CAS  PubMed  Google Scholar 

  • Escobar PA, Olivero OA, Wade NA et al (2007) Genotoxicity assessed by the comet and GPA assays following in vitro exposure of human lymphoblastoid cells (H9) or perinatal exposure of mother-child pairs to AZT or AZT-3TC. Environ Mol Mutagen 48(3–4):330–343

    Article  CAS  PubMed  Google Scholar 

  • Falchetti A, Franchi A, Bordi C et al (2005) Azidothymidine induces apoptosis and inhibits cell growth and telomerase activity of human parathyroid cancer cells in culture. J Bone Miner Res 20(3):410–418

    Article  CAS  PubMed  Google Scholar 

  • Fang J-L, Beland FA (2009) Long-term exposure to zidovudine delays cell cycle progression, induces apoptosis, and decreases telomerase activity in human hepatocytes. Toxicol Sci 111(1):120–130

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Harris SC, Su Z et al (2009a) ArrayTrack: an FDA and public genomic tool. Methods Mol Biol 563:379–398

    Article  CAS  PubMed  Google Scholar 

  • Fang J-L, McGarrity LJ, Beland FA (2009b) Interference of cell cycle progression by zidovudine and lamivudine in NIH 3T3 cells. Mutagenesis 24(2):133–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischl MA, Richman DD, Hansen N et al (1990) The safety and efficacy of zidovudine (AZT) in the treatment of subjects with mildly symptomatic human immunodeficiency virus type 1 (HIV) infection. A double-blind, placebo-controlled trial. The AIDS Clinical Trials Group. Ann Intern Med 112(10):727–737

    Article  CAS  PubMed  Google Scholar 

  • Furman PA, Fyfe JA, St Clair MH et al (1986) Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci USA 83(21):8333–8337

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez Cid M, Larripa I (1994) Genotoxic activity of azidothymidine (AZT) in vitro systems. Mutat Res 321(1–2):113–118

    Article  CAS  PubMed  Google Scholar 

  • Good SS, Koble CS, Crouch R, Johnson RL, Rideout JL, de Miranda P (1990) Isolation and characterization of an ether glucuronide of zidovudine, a major metabolite in monkeys and humans. Drug Metab Dispos 18(3):321–326

    CAS  PubMed  Google Scholar 

  • Grdina DJ, Dale P, Weichselbaum R (1992) Protection against AZT-induced mutagenesis at the HGPRT locus in a human cell line by WR-151326. Int J Radiat Oncol Biol Phys 22(4):813–815

    Article  CAS  PubMed  Google Scholar 

  • Groschel B, Miller V, Doerr HW, Cinatl J Jr (2000) Activity of cellular thymidine kinase 1 in PBMC of HIV-1-infected patients: novel therapy marker. Infection 28(4):209–213

    Article  CAS  PubMed  Google Scholar 

  • Groschel B, Kaufmann A, Hover G et al (2002) 3′-Azido-2′,3′-dideoxythymidine induced deficiency of thymidine kinases 1, 2 and deoxycytidine kinase in H9 T-lymphoid cells. Biochem Pharmacol 64(2):239–246

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP (2012) The monocarboxylate transporter family: structure and functional characterization. IUBMB Life 64(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Han T, Fernandez M, Sarkar M, Agarwal RP (2004) 2′, 3′-Dideoxycytidine represses thymidine kinases 1 and 2 expression in T-lymphoid cells. Life Sci 74(7):835–842

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Farquhar D, Plunkett W (1990) Selective action of 3′-azido-3′-deoxythymidine 5′-triphosphate on viral reverse transcriptases and human DNA polymerases. J Biol Chem 265(20):11914–11918

    CAS  PubMed  Google Scholar 

  • Huber-Ruano I, Pastor-Anglada M (2009) Transport of nucleoside analogs across the plasma membrane: a clue to understanding drug-induced cytotoxicity. Curr Drug Metab 10(4):347–358

    Article  CAS  PubMed  Google Scholar 

  • Humer J, Ferko B, Waltenberger A, Rapberger R, Pehamberger H, Muster T (2008) Azidothymidine inhibits melanoma cell growth in vitro and in vivo. Melanoma Res 18(5):314–321

    Article  CAS  PubMed  Google Scholar 

  • IARC (2000) Zidovudine (AZT). IARC monographs on the evaluation of carcinogenic risks to humans. Some antiviral and antineoplastic drugs, and other pharmaceutical agents. IARC, Lyon, France, vol 76, pp 73–127

  • Ingrand D, Weber J, Boucher CA et al (1995) Phase I/II study of 3TC (lamivudine) in HIV-positive, asymptomatic or mild AIDS-related complex patients: sustained reduction in viral markers. The Lamivudine European HIV Working Group. AIDS 9(12):1323–1329

    Article  CAS  PubMed  Google Scholar 

  • Jacobsson B, Britton S, He Q, Karlsson A, Eriksson S (1995) Decreased thymidine kinase levels in peripheral blood cells from HIV-seropositive individuals: implications for zidovudine metabolism. AIDS Res Hum Retroviruses 11(7):805–811

    Article  CAS  PubMed  Google Scholar 

  • Jones RJ, Bischofberger N (1995) Minireview: nucleotide prodrugs. Antiviral Res 27(1–2):1–17

    Article  CAS  PubMed  Google Scholar 

  • Kis O, Robillard K, Chan GN, Bendayan R (2010) The complexities of antiretroviral drug–drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci 31(1):22–35

    Article  CAS  PubMed  Google Scholar 

  • Lavie A, Schlichting I, Vetter IR, Konrad M, Reinstein J, Goody RS (1997) The bottleneck in AZT activation. Nat Med 3(8):922–924

    Article  CAS  PubMed  Google Scholar 

  • Lavie A, Ostermann N, Brundiers R et al (1998) Structural basis for efficient phosphorylation of 3′-azidothymidine monophosphate by Escherichia coli thymidylate kinase. Proc Natl Acad Sci USA 95(24):14045–14050

    Article  CAS  PubMed  Google Scholar 

  • Lertora JJ, Rege AB, Greenspan DL et al (1994) Pharmacokinetic interaction between zidovudine and valproic acid in patients infected with human immunodeficiency virus. Clin Pharmacol Ther 56(3):272–278

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Lu J, Paxton JW (2012) The role of ABC and SLC transporters in the pharmacokinetics of dietary and herbal phytochemicals and their interactions with xenobiotics. Curr Drug Metab 13(5):624–639

    Article  CAS  PubMed  Google Scholar 

  • McGowan JP, Shah SS (2000) Prevention of perinatal HIV transmission during pregnancy. J Antimicrob Chemother 46(5):657–668

    Article  CAS  PubMed  Google Scholar 

  • Melana SM, Holland JF, Pogo BG (1998) Inhibition of cell growth and telomerase activity of breast cancer cells in vitro by 3′-azido-3′-deoxythymidine. Clin Cancer Res 4(3):693–696

    CAS  PubMed  Google Scholar 

  • Moore KH, Raasch RH, Brouwer KL et al (1995) Pharmacokinetics and bioavailability of zidovudine and its glucuronidated metabolite in patients with human immunodeficiency virus infection and hepatic disease (AIDS Clinical Trials Group protocol 062). Antimicrob Agents Chemother 39(12):2732–2737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nickel W, Austermann S, Bialek G, Grosse F (1992) Interactions of azidothymidine triphosphate with the cellular DNA polymerases α, δ, and ε and with DNA primase. J Biol Chem 267(2):848–854

    CAS  PubMed  Google Scholar 

  • NTP (1999) Toxicology and carcinogenesis studies of AZT (CAS No. 30516-87-1) and AZT/α-interferon A/D B6C3F1 mice (gavage studies). Natl Toxicol Program Tech Rep Ser 469:1–361

    Google Scholar 

  • Olivero OA, Anderson LM, Diwan BA et al (1997) Transplacental effects of 3′-azido-2′,3′-dideoxythymidine (AZT): tumorigenicity in mice and genotoxicity in mice and monkeys. J Natl Cancer Inst 89(21):1602–1608

    Article  CAS  PubMed  Google Scholar 

  • Olivero OA, Vazquez IL, Cooch CC et al (2010) Long-term AZT exposure alters the metabolic capacity of cultured human lymphoblastoid cells. Toxicol Sci 115(1):109–117

    Article  CAS  PubMed  Google Scholar 

  • Pan G, Giri N, Elmquist WF (2007) Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab Dispos 35(7):1165–1173

    Article  CAS  PubMed  Google Scholar 

  • PDR (2009) Retrovir® (GlaxoSmithKline) (zidovudine) tablets, capsules, and syrup. In: Physicians’ desk reference. Physicians’ Desk Reference Inc., Montvale, vol 63, pp 1574–1582

  • Pfeifer AM, Cole KE, Smoot DT et al (1993) Simian virus 40 large tumour antigen-immortalized normal human liver epithelial cells express hepatocyte characteristics and metabolize chemical carcinogens. Proc Natl Acad Sci USA 90:5123–5127

    Article  CAS  PubMed  Google Scholar 

  • Powles T, Robinson D, Stebbing J et al (2009) Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J Clin Oncol 27(6):884–890

    Article  PubMed  Google Scholar 

  • Purcet S, Minuesa G, Molina-Arcas M et al (2006) 3′-Azido-2′,3′-dideoxythymidine (zidovudine) uptake mechanisms in T lymphocytes. Antivir Ther 11(6):803–811

    CAS  PubMed  Google Scholar 

  • Roskrow M, Wickramasinghe SN (1990) Acute effects of 3′-azido-3′-deoxythymidine on the cell cycle of HL60 cells. Clin Lab Haematol 12(2):177–184

    CAS  PubMed  Google Scholar 

  • Sahai J, Gallicano K, Pakuts A, Cameron DW (1994) Effect of fluconazole on zidovudine pharmacokinetics in patients infected with human immunodeficiency virus. J Infect Dis 169(5):1103–1107

    Article  CAS  PubMed  Google Scholar 

  • Torres SM, Walker DM, Carter MM et al (2007) Mutagenicity of zidovudine, lamivudine, and abacavir following in vitro exposure of human lymphoblastoid cells or in utero exposure of CD-1 mice to single agents or drug combinations. Environ Mol Mutagen 48(3–4):224–238

    Article  CAS  PubMed  Google Scholar 

  • Tosi P, Calabresi P, Goulette FA, Renaud CA, Darnowski JW (1992) Azidothymidine-induced cytotoxicity and incorporation into DNA in the human colon tumor cell line HCT-8 is enhanced by methotrexate in vitro and in vivo. Cancer Res 52(15):4069–4073

    CAS  PubMed  Google Scholar 

  • Vazquez-Padua MA, Starnes MC, Cheng YC (1990) Incorporation of 3′-azido-3′-deoxythymidine into cellular DNA and its removal in a human leukemic cell line. Cancer Commun 2(1):55–62

    CAS  PubMed  Google Scholar 

  • Wu S, Liu X, Solorzano MM, Kwock R, Avramis VI (1995) Development of zidovudine (AZT) resistance in Jurkat T cells is associated with decreased expression of the thymidine kinase (TK) gene and hypermethylation of the 5′ end of human TK gene. J Acquir Immune Defic Syndr Hum Retrovirol 8(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Wu YW, Xiao Q, Jiang YY, Fu H, Ju Y, Zhao YF (2004) Synthesis, in vitro anticancer evaluation, and interference with cell cycle progression of N-phosphoamino acid esters of zidovudine and stavudine. Nucleosides, Nucleotides Nucleic Acids 23(11):1797–1811

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Beland FA, Chang C-W, Fang J-L (2011) XPC is essential for nucleotide excision repair of zidovudine-induced DNA damage in human hepatoma cells. Toxicol Appl Pharmacol 251(2):155–162

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Beland FA, Chang C-W, Fang J-L (2013) Role of DNA repair pathways in response to zidovudine-induced DNA damage in immortalized human liver THLE2 cells. Int J Biomed Sci 9(1):18–25

    PubMed  Google Scholar 

  • Zhang Z, Diwan BA, Anderson LM et al (1998) Skin tumorigenesis and Ki-ras and Ha-ras mutations in tumors from adult mice exposed in utero to 3′-azido-2′,3′-dideoxythymidine. Mol Carcinog 23(1):45–51

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Qiangen Wu was supported by an appointment to the Postgraduate Research Program in the Division of Biochemical Toxicology at the National Center for Toxicological Research administered by Oak Ridge Institute for Science Education through an interagency agreement between the US Department of Energy and the FDA. This research was supported through an interagency agreement between the National Center for Toxicological Research, US Food and Drug Administration and the National Toxicology Program, National Institute of Environmental Health Sciences. (FDA IAG: 224-07-0007; NIH Y1ES1027).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Long Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, JL., Han, T., Wu, Q. et al. Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol 88, 609–623 (2014). https://doi.org/10.1007/s00204-013-1169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1169-3

Keywords

Navigation