Skip to main content

Advertisement

Log in

Transcriptomic alterations induced by Ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model

  • Toxicogenomics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Ochratoxin A (OTA) is a widely studied compound due to its role in renal toxicity and carcinogenicity. However, there is still no consensus on the exact mechanisms of toxicity or carcinogenicity. In the current study, we analysed the effect of OTA on three human renal proximal tubular models (human primary, RPTEC/TERT1 and HK-2 cells) and two rat renal proximal tubular models (rat primary and NRK-52E cells). Global transcriptomics analysis at two exposure times was performed to generate a set of 756 OTA sensitive genes. This gene set was then compared in more detail across all models and additionally to a rat in vivo renal cortex model. The results demonstrate a well-conserved response across all models. OTA resulted in deregulation of a number of pathways including cytoskeleton, nucleosome regulation, translation, transcription, ubiquitination and cell cycle pathways. Interestingly, the oxidative stress activated Nrf2 pathway was not enriched. These results point to an epigenetic action of OTA, perhaps initiated by actin binding as the actin remodelling gene, advillin was the highest up-regulated in all models. The largest model differences were observed between the human and the rat in vitro models. However, since the human in vitro models were more similar to the rat in vivo model, it is more likely that these differences are model-specific rather than species-specific per se. This study demonstrates the usefulness of in vitro cell culture models combined with transcriptomic analysis for the investigation of mechanisms of toxicity and carcinogenicity. In addition, these results provide further evidence supporting a non-genotoxic mechanism of OTA-induced carcinogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aydin S, Signorelli S, Lechleitner T et al (2008) Influence of microvascular endothelial cells on transcriptional regulation of proximal tubular epithelial cells. Am J Physiol Cell Physiol 294(2):C543–C554. doi:10.1152/ajpcell.00307.2007

    Article  PubMed  CAS  Google Scholar 

  • Boesch-Saadatmandi C, Wagner AE, Graeser AC, Hundhausen C, Wolffram S, Rimbach G (2009) Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells. J Anim Physiol Anim Nutr (Berl) 93(5):547–554. doi:10.1111/j.1439-0396.2008.00838.x

    Article  CAS  Google Scholar 

  • Boorman GA, McDonald MR, Imoto S, Persing R (1992) Renal lesions induced by ochratoxin A exposure in the F344 rat. Toxicol Pathol 20(2):236–245

    Article  PubMed  CAS  Google Scholar 

  • Cavin C, Delatour T, Marin-Kuan M et al (2007) Reduction in antioxidant defenses may contribute to ochratoxin A toxicity and carcinogenicity. Toxicol Sci 96(1):30–39. doi:10.1093/toxsci/kfl169

    Article  PubMed  CAS  Google Scholar 

  • Chang B, Chen Y, Zhao Y, Bruick RK (2007) JMJD6 is a histone arginine demethylase. Science 318(5849):444–447. doi:10.1126/science.1145801

    Article  PubMed  CAS  Google Scholar 

  • Clark HA, Snedeker SM (2006) Ochratoxin A: its cancer risk and potential for exposure. J Toxicol Environ Health B Crit Rev 9(3):265–296. doi:10.1080/15287390500195570

    Article  PubMed  CAS  Google Scholar 

  • Creppy EE, Roschenthaler R, Dirheimer G (1984) Inhibition of protein synthesis in mice by ochratoxin A and its prevention by phenylalanine. Food Chem Toxicol 22(11):883–886

    Article  PubMed  CAS  Google Scholar 

  • Creppy EE, Chakor K, Fisher MJ, Dirheimer G (1990) The myocotoxin ochratoxin A is a substrate for phenylalanine hydroxylase in isolated rat hepatocytes and in vivo. Arch Toxicol 64(4):279–284

    Article  PubMed  CAS  Google Scholar 

  • Czakai K, Muller K, Mosesso P et al (2011) Perturbation of mitosis through inhibition of histone acetyltransferases: the key to ochratoxin A toxicity and carcinogenicity? Toxicol Sci. doi:10.1093/toxsci/kfr110

    PubMed  Google Scholar 

  • Dirheimer G, Creppy EE (1991) Mechanism of action of ochratoxin A. IARC Sci Publ 115:171–186

    PubMed  CAS  Google Scholar 

  • Dopp E, Muller J, Hahnel C, Schiffmann D (1999) Induction of genotoxic effects and modulation of the intracellular calcium level in Syrian hamster embryo (SHE) fibroblasts caused by ochratoxin A. Food Chem Toxicol 37(7):713–721

    Article  PubMed  CAS  Google Scholar 

  • Gautier JC, Holzhaeuser D, Markovic J, Gremaud E, Schilter B, Turesky RJ (2001) Oxidative damage and stress response from ochratoxin a exposure in rats. Free Radic Biol Med 30(10):1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Jennings P, Aydin S, Bennett J et al (2009) Inter-laboratory comparison of human renal proximal tubule (HK-2) transcriptome alterations due to Cyclosporine A exposure and medium exhaustion. Toxicol In Vitro 23(3):486–499. doi:10.1016/j.tiv.2008.12.023

    Article  PubMed  CAS  Google Scholar 

  • Kamp HG, Eisenbrand G, Janzowski C et al (2005a) Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats. Mol Nutr Food Res 49(12):1160–1167. doi:10.1002/mnfr.200500124

    Article  PubMed  CAS  Google Scholar 

  • Kamp HG, Eisenbrand G, Schlatter J, Wurth K, Janzowski C (2005b) Ochratoxin A: induction of (oxidative) DNA damage, cytotoxicity and apoptosis in mammalian cell lines and primary cells. Toxicology 206(3):413–425. doi:10.1016/j.tox.2004.08.004

    Article  PubMed  CAS  Google Scholar 

  • Luhe A, Hildebrand H, Bach U, Dingermann T, Ahr HJ (2003) A new approach to studying ochratoxin A (OTA)-induced nephrotoxicity: expression profiling in vivo and in vitro employing cDNA microarrays. Toxicol Sci 73(2):315–328. doi:10.1093/toxsci/kfg073

    Article  PubMed  Google Scholar 

  • Mally A, Dekant W (2009) Mycotoxins and the kidney: modes of action for renal tumor formation by ochratoxin A in rodents. Mol Nutr Food Res 53(4):467–478. doi:10.1002/mnfr.200800149

    Article  PubMed  CAS  Google Scholar 

  • Marin-Kuan M, Nestler S, Verguet C et al (2006) A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin a carcinogenicity in rat. Toxicol Sci 89(1):120–134. doi:10.1093/toxsci/kfj017

    Article  PubMed  CAS  Google Scholar 

  • Marin-Kuan M, Nestler S, Verguet C et al (2007) MAPK-ERK activation in kidney of male rats chronically fed ochratoxin A at a dose causing a significant incidence of renal carcinoma. Toxicol Appl Pharmacol 224(2):174–181. doi:10.1016/j.taap.2007.06.014

    Article  PubMed  CAS  Google Scholar 

  • Marin-Kuan M, Cavin C, Delatour T, Schilter B (2008) Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms. Toxicon 52(2):195–202. doi:10.1016/j.toxicon.2008.04.166

    Article  PubMed  CAS  Google Scholar 

  • Marks PW, Arai M, Bandura JL, Kwiatkowski DJ (1998) Advillin (p92): a new member of the gelsolin/villin family of actin regulatory proteins. J Cell Sci 111(Pt 15):2129–2136

    PubMed  CAS  Google Scholar 

  • NTP (1989) Toxicology and carcinogenesis studies of ochratoxin A in F344/N rats (gavage studies). Natl Toxicol Program Tech Rep Ser 358:1–142

    Google Scholar 

  • Petrik J, Zanic-Grubisic T, Barisic K et al (2003) Apoptosis and oxidative stress induced by ochratoxin A in rat kidney. Arch Toxicol 77(12):685–693. doi:10.1007/s00204-003-0501-8

    Article  PubMed  CAS  Google Scholar 

  • Preuss U, Landsberg G, Scheidtmann KH (2003) Novel mitosis-specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res 31(3):878–885

    Article  PubMed  CAS  Google Scholar 

  • Rached E, Pfeiffer E, Dekant W, Mally A (2006) Ochratoxin A: apoptosis and aberrant exit from mitosis due to perturbation of microtubule dynamics? Toxicol Sci 92(1):78–86. doi:10.1093/toxsci/kfj213

    Article  PubMed  CAS  Google Scholar 

  • Rizkallah R, Alexander KE, Kassardjian A, Lüscher B, Hurt MM (2011) The transcription factor YY1 Is a substrate for polo-like kinase 1 at the G2/M transition of the cell cycle. PLoS ONE 6(1):e15928

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Roy BC, Hatano N, Aoyagi T, Gohji K, Kiyama R (2002) A novel ankyrin repeat-containing gene (Kank) located at 9p24 is a growth suppressor of renal cell carcinoma. J Biol Chem 277(39):36585–36591. doi:10.1074/jbc.M204244200

    Article  PubMed  CAS  Google Scholar 

  • SCOOP (2002) Reports on tasks for scientific cooperation: assessment of dietary intake of ochratoxin A by the population of EU member states. http://eceuropaeu/food/fs/scoop/327_enpdf

  • Silacci P, Mazzolai L, Gauci C, Stergiopulos N, Yin HL, Hayoz D (2004) Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci 61(19–20):2614–2623. doi:10.1007/s00018-004-4225-6

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Chin YE, Zhang DD (2009) Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Mol Cell Biol 29(10):2658–2672. doi:10.1128/MCB.01639-08

    Article  PubMed  CAS  Google Scholar 

  • Turesky RJ (2005) Perspective: ochratoxin A is not a genotoxic carcinogen. Chem Res Toxicol 18(7):1082–1090. doi:10.1021/tx050076e

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Kakinuma N, Zhu Y, Kiyama R (2006) Nucleo-cytoplasmic shuttling of human Kank protein accompanies intracellular translocation of beta-catenin. J Cell Sci 119(Pt 19):4002–4010. doi:10.1242/jcs.03169

    Article  PubMed  CAS  Google Scholar 

  • Weiland C, Ahr HJ, Vohr HW, Ellinger-Ziegelbauer H (2007) Characterization of primary rat proximal tubular cells by gene expression analysis. Toxicol In Vitro 21(3):466–491. doi:10.1016/j.tiv.2006.10.008

    Article  PubMed  CAS  Google Scholar 

  • Wieser M, Stadler G, Jennings P et al (2008) hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. Am J Physiol Renal Physiol 295(5):F1365–F1375. doi:10.1152/ajprenal.90405.2008

    Article  PubMed  CAS  Google Scholar 

  • Wilmes A, Crean D, Aydin S, Pfaller W, Jennings P, Leonard MO (2011) Identification and dissection of the Nrf2 mediated oxidative stress pathway in human renal proximal tubule toxicity. Toxicol In Vitro 25(3):613–622. doi:10.1016/j.tiv.2010.12.009

    Article  PubMed  CAS  Google Scholar 

  • Wright GW, Simon RM (2003) A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 19(18):2448–2455

    Article  PubMed  CAS  Google Scholar 

  • Zlender V, Breljak D, Ljubojevic M et al (2009) Low doses of ochratoxin A upregulate the protein expression of organic anion transporters Oat1, Oat2, Oat3 and Oat5 in rat kidney cortex. Toxicol Appl Pharmacol 239(3):284–296. doi:10.1016/j.taap.2009.06.008

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Jennings.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, P., Weiland, C., Limonciel, A. et al. Transcriptomic alterations induced by Ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model. Arch Toxicol 86, 571–589 (2012). https://doi.org/10.1007/s00204-011-0780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0780-4

Keywords

Navigation