Skip to main content

Advertisement

Log in

Driving gradual endogenous c-myc overexpression by flow-sorting: intracellular signaling and tumor cell phenotype correlate with oncogene expression

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Insulin-exposed rat mammary cancer cells were flow sorted based on a c-myc reporter plasmid encoding a destabilized green fluorescent protein. Sorted cells exhibited gradual increases in c-myc levels. Cells overexpressing c-myc by only 10% exhibited phenotypic changes attributable to c-myc overexpression, such as cell cycle disturbances, increased cell size, and overexpression of the S6 ribosomal protein. Cells overexpressing c-myc by 70% exhibited additional phenotypic changes typical of c-myc overexpression, such as increased histone H3 phosphorylation, and reduced adherence. Sorted cells also exhibited overexpression of the IGF-1R, and slightly elevated expression of the IR. Increased susceptibility to the mitogenic effect of insulin was seen in a small proportion of the sorted cells, and insulin was more effective in activating the p44/42 MAPK pathway, but not the PI3K pathway, in the sorted cells than in the nonsorted cell population. To our knowledge, this is the first in vitro system allowing functional coupling between mitogenic signaling by a well-defined growth factor and gradual overexpression of the normal, endogenous c-myc gene. Thus, our flow-sorting approach provides an alternative modeling of the receptor-mediated carcinogenic process, compared to the currently used approaches of recombinant constitutive or conditional overexpression of oncogenic transmembrane receptor tyrosine kinases or oncogenic transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase B, PKB

CFSE:

Carboxy-fluorescein diacetate, succinimydyl ester

4E-BP1 (PHAS):

eIF4E translation initiation factor binding protein 1 (phosphorylated in response to insulin, heat and acid stable)

EGFR:

Epidermal growth factor receptor

Egr-1:

Early growth response transcription factor, Zif268

ER:

Estrogen receptor

FoxO1, FoxO3a:

Forkhead box “other” subfamily transcription factors

GFP:

Green fluorescent protein

IGF-1:

Insulin-like growth factor 1

IGF-1R:

Insulin-like growth factor receptor 1

IR:

Insulin receptor

IRS-1:

Insulin receptor substrate 1

p44/p42 MAPK:

Mitogen-activated protein kinases, Erk1 and Erk2

p70S6K:

p70 S6 kinase

PI3K:

Phosphatidylinositol 3-kinase

pRb:

Retinoblastoma protein

S6:

S6 ribosomal protein

SAPK/JNK:

Stress-activated protein kinase/Jun-aminoterminal kinase

X-10:

AspB10 insulin, hypermitogenic insulin analogue

References

  • Ahmad T, Farnie G, Bundred NJ, Anderson NG (2004) The mitogenic action of insulin-like growth factor I in normal human mammary epithelial cells requires the epidermal growth factor receptor tyrosine kinase. J Biol Chem 279:1713–1719

    Article  CAS  PubMed  Google Scholar 

  • Bader AG, Kang S, Zhao L, Vogt PK (2005) Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 5:921–929

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Dorudi S, Phillips SM, Feakins RM, Jenkins PJ (2002) Local expression of insulin-like growth factor-I affects angiogenesis in colorectal cancer. Tumour Biol 23:130–138

    Article  CAS  PubMed  Google Scholar 

  • Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19:1–11

    CAS  PubMed  Google Scholar 

  • Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264

    Article  CAS  PubMed  Google Scholar 

  • de NF, Balestrieri ML, Napoli C (2006) Targeting c-Myc, Ras and IGF cascade to treat cancer and vascular disorders. Cell Cycle 5:1621–1628

    Google Scholar 

  • European Agency for the Evaluation of Medicinal Products (2001) Points to consider document on the non-clinical assessment of the carcinogenic potential of insulin analogues

  • Felsher DW (2008) Oncogene addiction versus oncogene amnesia: perhaps more than just a bad habit? Cancer Res 68:3081–3086

    Article  CAS  PubMed  Google Scholar 

  • Fernandez SL, Russell DW, Hurlin PJ (2007) Development of human gene reporter cell lines using rAAV mediated homologous recombination. Biol Proced Online 9:84–90

    CAS  PubMed  Google Scholar 

  • Grandori C, Eisenman RN (1997) Myc target genes. Trends Biochem Sci 22:177–181

    Article  CAS  PubMed  Google Scholar 

  • Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699

    Article  CAS  PubMed  Google Scholar 

  • Holland EC (2004) Regulation of translation and cancer. Cell Cycle 3:452–455

    CAS  PubMed  Google Scholar 

  • Holland EC, Sonenberg N, Pandolfi PP, Thomas G (2004) Signaling control of mRNA translation in cancer pathogenesis. Oncogene 23:3138–3144

    Article  CAS  PubMed  Google Scholar 

  • Kaburagi Y, Yamashita R, Ito Y, Okochi H, Yamamoto-Honda R, Yasuda K, Sekihara H, Sasazuki T, Kadowaki T, Yazaki Y (2004) Insulin-induced cell cycle progression is impaired in Chinese hamster ovary cells overexpressing insulin receptor substrate-3. Endocrinology 145:5862–5874

    Article  CAS  PubMed  Google Scholar 

  • Knoepfler PS (2007) Myc goes global: new tricks for an old oncogene. Cancer Res 67:5061–5063

    Article  CAS  PubMed  Google Scholar 

  • Lammers R, Gray A, Schlessinger J, Ullrich A (1989) Differential signalling potential of insulin- and IGF-1-receptor cytoplasmic domains. EMBO J 8:1369–1375

    CAS  PubMed  Google Scholar 

  • Li Z, Van CS, Qu C, Cavenee WK, Zhang MQ, Ren B (2003) A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc Natl Acad Sci USA 100:8164–8169

    Article  CAS  PubMed  Google Scholar 

  • Matsuda K, Araki E, Yoshimura R, Tsuruzoe K, Furukawa N, Kaneko K, Motoshima H, Yoshizato K, Kishikawa H, Shichiri M (1997) Cell-specific regulation of IRS-1 gene expression: role of E box and C/EBP binding site in HepG2 cells and CHO cells. Diabetes 46:354–362

    Article  CAS  PubMed  Google Scholar 

  • McNeil CM, Sergio CM, Anderson LR, Inman CK, Eggleton SA, Murphy NC, Millar EK, Crea P, Kench JG, Alles MC, Gardiner-Garden M, Ormandy CJ, Butt AJ, Henshall SM, Musgrove EA, Sutherland RL (2006) c-Myc overexpression and endocrine resistance in breast cancer. J Steroid Biochem Mol Biol 102:147–155

    Article  CAS  PubMed  Google Scholar 

  • Perini G, Diolaiti D, Porro A, Della VG (2005) In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. Proc Natl Acad Sci USA 102:12117–12122

    Article  CAS  PubMed  Google Scholar 

  • Piedra ME, Delgado MD, Ros MA, Leon J (2002) c-Myc overexpression increases cell size and impairs cartilage differentiation during chick limb development. Cell Growth Differ 13:185–193

    CAS  PubMed  Google Scholar 

  • Ravitz MJ, Chen L, Lynch M, Schmidt EV (2007) c-myc repression of TSC2 contributes to control of translation initiation and Myc-induced transformation. Cancer Res 67:11209–11217

    Article  CAS  PubMed  Google Scholar 

  • Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C, Pandolfi PP (2004) The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10:484–486

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EV (1999) The role of c-myc in cellular growth control. Oncogene 18:2988–2996

    Article  CAS  PubMed  Google Scholar 

  • Schuhmacher M, Staege MS, Pajic A, Polack A, Weidle UH, Bornkamm GW, Eick D, Kohlhuber F (1999) Control of cell growth by c-Myc in the absence of cell division. Curr Biol 9:1255–1258

    Article  CAS  PubMed  Google Scholar 

  • Singer CF, Kostler WJ, Hudelist G (2008) Predicting the efficacy of trastuzumab-based therapy in breast cancer: current standards and future strategies. Biochim Biophys Acta

  • Stephens L, Williams R, Hawkins P (2005) Phosphoinositide 3-kinases as drug targets in cancer. Curr Opin Pharmacol 5:357–365

    Article  CAS  PubMed  Google Scholar 

  • Urso B, Cope DL, Kalloo-Hosein HE, Hayward AC, Whitehead JP, O’Rahilly S, Siddle K (1999) Differences in signaling properties of the cytoplasmic domains of the insulin receptor and insulin-like growth factor receptor in 3T3-L1 adipocytes. J Biol Chem 274:30864–30873

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Johansson HE, Bergholm UI, Westermark KM, Grimelius LE (1997) Expression of c-Myc, TGF-alpha and EGF-receptor in sporadic medullary thyroid carcinoma. Acta Oncol 36:407–411

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Mannava S, Grachtchouk V, Zhuang D, Soengas MS, Gudkov AV, Prochownik EV, Nikiforov MA (2008) c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene 27:1905–1915

    Article  CAS  PubMed  Google Scholar 

  • West MJ, Stoneley M, Willis AE (1998) Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway. Oncogene 17:769–780

    Article  CAS  PubMed  Google Scholar 

  • Zeller KI, Jegga AG, Aronow BJ, O’Donnell KA, Dang CV (2003) An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4:R69

    Article  PubMed  Google Scholar 

  • Zhu J, Blenis J, Yuan J (2008) Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1. Proc Natl Acad Sci USA 105:6584–6589

    Article  CAS  PubMed  Google Scholar 

  • Zippo A, De RA, Serafini R, Oliviero S (2007) PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9:932–944

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin B. Oleksiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knudsen, K.J., Nelander Holm, GM., Krabbe, J.S. et al. Driving gradual endogenous c-myc overexpression by flow-sorting: intracellular signaling and tumor cell phenotype correlate with oncogene expression. Arch Toxicol 83, 1061–1074 (2009). https://doi.org/10.1007/s00204-009-0463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-009-0463-6

Keywords

Navigation