Skip to main content

Advertisement

Log in

Renal deterioration caused by carcinogens as a consequence of free radical mediated tissue damage: a review of the protective action of melatonin

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

This brief review summarizes some of the publications that document the preventive role of melatonin in kidney damage caused by carcinogens such as 2-nitropropane, arsenic, carbon tetrachloride, nitrilotriacetic acid and potassium bromate. Numerous chemicals generate excessive free radicals that eventually induce renal worsening. Melatonin partially or totally prevents free radical mediated tissue damages induced by many carcinogens. Protective actions of melatonin against the harmful effects of carcinogens are believed to stem from its direct free radical scavenging and indirect antioxidant activities. Dietary or pharmacologically given melatonin may attenuate the oxidative stress, thereby mitigating the subsequent renal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acuna CD, Escames G, Carazo A, Leon J, Khaldy H, Reiter RJ (2002) Melatonin, mitochondrial homeostasis and mitochondrial-related diseases. Curr Top Med Chem 2(2):133–151

    Article  PubMed  Google Scholar 

  • Al-Ghamdi SS, Raftery MJ, Yaqoob MM (2003) Acute solvent exposure induced activation of cytochrome P4502E1 causes proximal tubular cell necrosis by oxidative stress. Toxicol In Vitro 7(3):335–341

    Article  Google Scholar 

  • Anderson RL, Bishop WE, Campbell RL (1985) A review of the environmental and mammalian toxicology of nitrilotriacetic acid. Crit Rev Toxicol 15:1–102

    PubMed  CAS  Google Scholar 

  • Arhima MH, Gulati OP, Sharma SC (2004) The effect of Pycnogenol on fluoride induced rat kidney lysosomal damage in vitro. Phytother Res 8(3):244–246

    Article  Google Scholar 

  • Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG (2002) Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180(1):5–22 Comment in: Toxicology (2003) 186(1–2):171–173; author reply 175–177

    Article  PubMed  CAS  Google Scholar 

  • Basivireddy J, Jacob M, Pulimood AB, Balasubramanian KA (2004) Indomethacin-induced renal damage: role of oxygen free radicals. Biochem Pharmacol 67(3):587–599

    Article  PubMed  CAS  Google Scholar 

  • Boquist L, Boquist S, Ericsson I (1988) Structural beta cell changes and transient hyperglycemia in mice treated with compounds inducing inhibited citric acid cycle enzyme activity. Diabetes 37:89–98

    Article  PubMed  CAS  Google Scholar 

  • Bors W, Michel C, Dalke C, Stettmaier K, Saran M, Andrae U (1993) Radical intermediates during the oxidation of nitropropanes. The formation of NO2 from 2-nitropropane, its reactivity with nucleosides, and implications for the genotoxicity of 2-nitropropane. Chem Res Toxicol 6:302–309

    Article  PubMed  CAS  Google Scholar 

  • Cadenas S, Barja G (1999) Resveratrol, melatonin, vitamin E, and PBN protect against renal oxidative DNA damage induced by the kidney carcinogen KBrO3. Free Radic Biol Med 26(11–12):1531–1537

    Article  PubMed  CAS  Google Scholar 

  • Chen YC, Lin SY, Lin JK (1998) Involvement of reactive oxygen species and caspase 3 activation in arsenic-induced apoptosis. J Cell Physiol 177:324–333

    Article  PubMed  CAS  Google Scholar 

  • Chuang JI, Mohan N, Meltz ML, Reiter RJ (1996) Effect of melatonin on NF-kappa-B DNA-binding activity in the rat spleen. Cell Biol Int 20(10):687–692

    Article  PubMed  CAS  Google Scholar 

  • Daniels WM, Reiter RJ, Melchiorri D, Sewerynek E, Pablos MI, Ortiz GG (1995) Melatonin counteracts lipid peroxidation induced by carbon tetrachloride but does not restore glucose-6 phosphatase activity. J Pineal Res 19(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • El-Demerdash FM, Yousef MI, Zoheir MA (2005) Stannous chloride induces alterations in enzyme activities, lipid peroxidation and histopathology in male rabbit: antioxidant role of vitamin C. Food Chem Toxicol 43(12):1743–1752

    Article  PubMed  CAS  Google Scholar 

  • El-Sokkary GH (2000) Melatonin protects against oxidative stress induced by the kidney carcinogen KBrO (3). Neuro Endocrinol Lett 21(6):461–468

    PubMed  CAS  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress. Part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  PubMed  CAS  Google Scholar 

  • Gitto E, Tan DX, Reiter RJ, Karbownik M, Manchester LC, Cuzzocrea S, Fulia F, Barberi I (2001) Individual and synergistic actions of melatonin: studies with vitamin E, vitamin C, glutathione and desferoxamine in liver homogenates. J Pharm Pharmacol 53:1393–1401

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Dubey DK, Kannan GM, Flora SJ (2007) Concomitant administration of Moringa oleifera seed powder in the remediation of arsenic-induced oxidative stress in mouse. Cell Biol Int 31(1):44–56

    Article  PubMed  CAS  Google Scholar 

  • Hamazaki S, Okada S, Ebina Y, Fujioka M, Midorikawa O (1985) Acute renal failure and glucosuria induced by ferric nitrilotriacetate in rats. Toxicol Appl Pharmacol 77:267–274

    Article  PubMed  CAS  Google Scholar 

  • Hamazaki S, Okada S, Li JL, Toyokuni S, Midorikawa O (1989) Oxygen reduction and lipid peroxidation by iron chelates with special reference to FeNTA. Arch Biochem Biophys 272:10–17

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann D, Rathkamp G (1968) Chemical studies on tobacco smoke. III. Primary and secondary nitroalkanes in cigarette smoke. Beitr Tabakforschung 4:124–134

    CAS  Google Scholar 

  • Huang HS, Ma MC, Chen J, Chen CF (2002) Changes in the oxidant–antioxidant balance in the kidney of rats with nephrolithiasis induced by ethylene glycol. J Urol 167(6):2584–2593

    Article  PubMed  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer) (1982) Some industrial chemicals and dyestuffsm. In: Monographs on the evaluation of carcinogenic risk of chemicals to human. WHO, Lyon, pp 331–343

  • IARC (International Agency for Research on Cancer) (1986) Some naturally occurring and synthetic food components, furocoumarins and ultraviolet radiation. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. IARC publication no. 40, Lyon, France, pp 207–220

  • Iqbal M, Okazaki Y, Okada S (2003a) In vitro curcumin modulates ferric nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H2O2)-induced peroxidation of microsomal membrane lipids and DNA damage. Teratog Carcinog Mutagen Suppl 1:151–160

    Article  Google Scholar 

  • Iqbal M, Okazaki Y, Sharma SD, Okada S (2003b) Nitroglycerin, a nitric oxide generator attenuates ferric nitrilotriacetate-induced renal oxidative stress, hyperproliferative response and necrosis in ddY mice. Biochim Biophys Acta 1623(2–3):98–108

    PubMed  CAS  Google Scholar 

  • JECFA. Joint FAO/WHO Expert Committee on Food Additives (1992) Evaluation of certain toxicants. Thirty-ninth JECFA report, WHO technical report series, no. 828

  • Jha AN, Noditi M, Nilsson R, Natarajan AT (1992) Genotoxic effects of sodium arsenite on human cells. Mutat Res 284:215–221

    PubMed  CAS  Google Scholar 

  • Johri S, Shrivastava S, Sharma P, Shukla S (2004) Analysis of time-dependent recovery from beryllium toxicity following chelation therapy and antioxidant supplementation. Indian J Exp Biol 42(8):798–802

    PubMed  CAS  Google Scholar 

  • Jou MJ, Peng TI, Reiter RJ, Jou SB, Wu HY, Wen ST (2004) Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes. J Pineal Res 37(1):55–70

    Article  PubMed  CAS  Google Scholar 

  • Kaltreider RC, Pesce CA, Ihnat MA, Lariviere JP, Hamilton JW (1999) Differential effects of arsenic (III) and chromium (VI) on nuclear transcription factor binding. Mol Carcinogen 25:219–229

    Article  CAS  Google Scholar 

  • Kan E, Undeger U, Bali M, Basaran N (2002) Assessment of DNA strand breakage by the alkaline COMET assay in dialysis patients and the role of vitamin E supplementation. Mutat Res 520(1–2):151–159

    PubMed  CAS  Google Scholar 

  • Karbownik M, Stasiak M, Zygmunt A, Zasada K, Lewinski A (2006) Protective effects of melatonin and indole-3-propionic acid against lipid peroxidation, caused by potassium bromate in the rat kidney. Cell Biochem Funct 24(6):483–489

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Bruckner JV, Dallas CE, Gallo JM (1990) Effect of dosing vehicles on the pharmacokinetics of orally administered carbon tetrachloride in rats. Toxicol Appl Pharmacol 102(1):50–60

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Reiter RJ, Rouvier Garay MV, Qi W, El-Sokkary GH, Tan DX (1998) 2-Nitropropane-induced lipid peroxidation: antitoxic effects of melatonin. Toxicology 130(2–3):183–190

    PubMed  CAS  Google Scholar 

  • Klahr S (2001) Urinary tract obstruction. Semin Nephrol 21:133–145

    Article  PubMed  CAS  Google Scholar 

  • Kohl C, Gescher A (1997) Denitrification of the genotoxicant 2-nitropropane: relationship to its mechanism of toxicity. Xenobiotica 27:843–852

    Article  PubMed  CAS  Google Scholar 

  • Kohl C, Mynett K, Davies JE, Gescher A, Chipman JK (1994) Propane 2-nitronate is the major genotoxic form of 2-nitropropane. Mutat Res 321:65–72

    Article  PubMed  CAS  Google Scholar 

  • Kohl C, Morgan P, Gescher A (1995) Metabolism of the genotoxicant 2-nitropropane to a nitric oxide species. Chem Biol Interact 97:175–184

    Article  PubMed  CAS  Google Scholar 

  • Kubo K, Saito M, Tadocoro T, Maekawa A (1997) Changes in susceptibility of tissues to lipid peroxidation after ingestion of various levels of docosahexanoic acid and vitamin E. Br J Nutr 78:655–669

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa Y, Maekawa A, Takahashi M, Hayashi Y (1990) Toxicity and carcinogenicity of potassium bromate—a new renal carcinogen. Environ Health Perspect 87:309–335

    Article  PubMed  CAS  Google Scholar 

  • Li W, Chou IN (1992) Effects of sodium arsenite on the cytoskeleton and cellular glutathione levels in cultured cells. Toxicol Appl Pharmacol 114:132–139

    Article  PubMed  CAS  Google Scholar 

  • Limson J, Nyokong T, Daya S (1998) The interaction of melatonin and its precursors with aluminum, cadmium, copper, iron, lead and zinc: an adsorptive voltammetric study. J Pineal Res 24:15–21

    Article  PubMed  CAS  Google Scholar 

  • Mayo JC, Tan DX, Sainz RM, Lopez-Burillo S, Reiter RJ (2003) Oxidative damage to catalase induced by peroxyl radicals: Functional protection by melatonin and other antioxidants. Free Radic Res 37:543–553

    Article  PubMed  CAS  Google Scholar 

  • Mittal M, Flora SJ (2006) Effects of individual and combined exposure to sodium arsenite and sodium fluoride on tissue oxidative stress, arsenic and fluoride levels in male mice. Chem Biol Interact 162(2):128–139

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Manzano V, Ishikawa Y, Lucio-Cazana J, Kitamura M (2000) Selective involvement of superoxide anion, but not downstream compounds hydrogen peroxide and peroxynitrite, in tumor necrosis factor-alpha-induced apoptosis of rat mesangial cells. J Biol Chem 275(17):12684–12691

    Article  PubMed  CAS  Google Scholar 

  • Nath KA, Norby SM (2000) Reactive oxygen species and acute renal failure. Am J Med 109(8):665–678

    Article  PubMed  CAS  Google Scholar 

  • Okada S, Midorikawa O (1982) Induction of rat renal adenocarcinoma by Fe-nitrilotriacetate (Fe-NTA). Jpn Arch Internal Med 29:485–491

    CAS  Google Scholar 

  • Omurtag GZ, Guranlioglu FD, Sehirli O, Arbak S, Uslu B, Gedik N, Sener G (2005) Protective effect of aqueous garlic extract against naphthalene-induced oxidative stress in mice. J Pharm Pharmacol 57(5):623–630

    Article  PubMed  CAS  Google Scholar 

  • Pal S, Chatterjee AK (2005) Prospective protective role of melatonin against arsenic-induced metabolic toxicity in Wistar rats. Toxicology 208(1):25–33

    Article  PubMed  CAS  Google Scholar 

  • Pal S, Chatterjee AK (2006) Possible beneficial effects of melatonin supplementation on arsenic-induced oxidative stress in Wistar rats. Drug Chem Toxicol 29(4):423–433

    Article  PubMed  CAS  Google Scholar 

  • Prasad GV, Rossi NF (1995) Arsenic intoxication associated with tubulointestinal nephritis. Am J Kidney Dis 26:373–376

    PubMed  CAS  Google Scholar 

  • Qi W, Reiter RJ, Tan DX, Manchester LC, Kim SJ, Garcia JJ (1999) Inhibitory effects of melatonin on ferric nitrilotriacetate-induced lipid peroxidation and oxidative DNA damage in the rat kidney. Toxicology 139(1–2):81–91

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan K, Anusuyadevi M, Shila S, Panneerselvam C (2005) Ascorbic acid and alpha-tocopherol as potent modulators of apoptosis on arsenic induced toxicity in rats. Toxicol Lett 156(2):297–306

    Article  PubMed  CAS  Google Scholar 

  • Rana SV, Verma Y (2005) Biochemical toxicity of benzene. J Environ Biol 26(2):157–168

    PubMed  CAS  Google Scholar 

  • Recknagel RO, Glende EA Jr, Dolak JA, Waller RL (1989) Mechanisms of carbon tetrachloride toxicity. Pharmacol Ther 43(1):139–154

    Article  PubMed  CAS  Google Scholar 

  • Reichl FX, Szinicz L, Kreppel H, Forth M (1988) Effect of arsenic on carbohydrate metabolism after single or repeated injection in guinea pigs. Arch Toxicol 62:473–475

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Osuna C, Gitto E (2000) Actions of melatonin in the reduction of oxidative stress: a review. J Biomed Res 7:444–458

    CAS  Google Scholar 

  • Reiter RJ, Tan DX, Manchester LC, Lopez-Burillo S, Sainz RM, Mayo JC (2003a) Melatonin: detoxification of oxygen and nitrogen-based toxic reactants. Adv Exp Med Biol 527:539–548

    PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Czarnocki Z (2003b) Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol 50(4):1129–1146

    PubMed  CAS  Google Scholar 

  • Rodrigo R, Rivera G (2002) Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine. Free Radic Biol Med 33(3):409–422

    Article  PubMed  CAS  Google Scholar 

  • Sai K, Tyson C A, Thomas DW, Dabbs JE, Hasegawa R, Kurokawa Y (1994) Oxidative DNA damage induced by potassium bromate in isolated rat renal proximal tubules and renal nuclei. Cancer Lett 87:1–7

    Article  PubMed  CAS  Google Scholar 

  • Scheuer H, Gwinner W, Hohbach J, Grone EF, Brandes RP, Malle E, Olbricht CJ, Walli AK, Grone HJ (2000) Oxidant stress in hyperlipidemia-induced renal damage. Am J Physiol Renal Physiol 278(1):F63–F74

    PubMed  CAS  Google Scholar 

  • Sener G, Paskaloglu K, Toklu H, Kapucu C, Ayanoglu-Dulger G, Kacmaz A, Sakarcan A (2004) Melatonin ameliorates chronic renal failure-induced oxidative organ damage in rats. J Pineal Res 36(4):232–241

    Article  PubMed  CAS  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR (2000) Significance of melatonin in anti oxidative defense system: reactions and products. Biol Signals Recept 9(3–4):137–159

    Article  PubMed  CAS  Google Scholar 

  • Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42(1):28–42

    Article  PubMed  CAS  Google Scholar 

  • Umemura TY, Sai K, Takagi A, Hasegawa R, Kurokawa Y (1990) Oxidative DNA damage, lipid peroxidation and nephrotoxity induced in the rat kidney after ferric nitrilotriacetate administration. Cancer Lett 54:95–100

    Article  PubMed  CAS  Google Scholar 

  • Urata Y, Honma S, Goto S, Todoroki S, Ueda T, Cho S, Honma K, Kondo T (1999) Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic Biol Med 27:838–847

    Article  PubMed  CAS  Google Scholar 

  • Valles EG, de Castro CR, Castro JA (1994) Late protective effects against CCl4-induced liver necrosis by the radioprotective agent 2-aminoethyl-isothiouronium bromide hydrobromide (AET). Toxicology 90(1–2):71–80

    Article  PubMed  CAS  Google Scholar 

  • van Dijk-Looijaard AM, van Genderen J (2000) Levels of exposure from drinking water. Food Chem Toxicol 38:37–42

    Article  Google Scholar 

  • Vincent AS, Lim BG, Tan J, Whiteman M, Cheung NS, Halliwell B, Wong KP (2004) Sulfite-mediated oxidative stress in kidney cells. Kidney Int 65(2):393–402

    Article  PubMed  CAS  Google Scholar 

  • Wang TS, Huang H (1994) Active oxygen species are involved in the induction of micronuclei by arsenite in XRS-5 cells. Mutagen 9:253–257

    Article  CAS  Google Scholar 

  • Watanabe S, Togashi S, Fukui T (2002) Contribution of nitric oxide to potassium bromate-induced elevation of methaemoglobin concentration in mouse blood. Biol Pharm Bull 25:1315–1319

    Article  PubMed  CAS  Google Scholar 

  • Weyers A, Gorla N, Ugnia L, Garcia Ovando H, Chesta C (2001) Increase of tissue lipid hydroperoxides as determination of oxidative stress. Biocell 25(1):11–15

    PubMed  CAS  Google Scholar 

  • Winiarska K, Drozak J, Wegrzynowicz M, Fraczyk T, Bryla J (2004) Diabetes-induced changes in glucose synthesis, intracellular glutathione status and hydroxyl free radical generation in rabbit kidney-cortex tubules. Mol Cell Biochem 261(1–2):91–98

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Gultekin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gultekin, F., Hicyilmaz, H. Renal deterioration caused by carcinogens as a consequence of free radical mediated tissue damage: a review of the protective action of melatonin. Arch Toxicol 81, 675–681 (2007). https://doi.org/10.1007/s00204-007-0242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-007-0242-1

Keywords

Navigation