Skip to main content

Advertisement

Log in

The involvement of organic acids in soil fertility, plant health and environment sustainability

  • Mini Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Increasing demand for safe food by an ever-growing human population emphasizes the urgency for increasing crop yields and reducing the losses caused by abiotic and biotic stresses; a partial solution to this problem is to develop a better understanding of plant–microbe interactions. Plant roots continuously release a wide range of compounds including organic acids in root exudates. These root exudates stimulate growth of specific microbial communities in the rhizosphere, which affect complex biological and physico-chemical interactions occurring between plant roots and the surrounding soil environment. In addition, organic acids are also released by different microbes and during decomposition of organic matter and plant residues in the soil. Interestingly, the available organic acids in the rhizosphere play crucial roles in various physio-chemical processes including the chemoattraction of microbes (both beneficial and pathogenic), mineralization and solubilization of complex minerals (P, K and Zn), biocontrol of phytopathogens, induction of systemic resistance, biogas formation, mitigation of abiotic stresses and, detoxification of metals and residual pesticides. Thus, organic acids play a significant role in the sustainable management of the soil ecosystem and in environmental sustainability. This review discusses the role of organic acids in the stimulation or enrichment of specific root-associated microbial communities and their effect on plant–microbe interactions at the root surface. In addition, the potential for root microbiome modification to enhance nutrient cycling and nutrient acquisition, and in amelioration of environmental stresses for increasing food production is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data, figures and tables have been submitted with the manuscript.

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. 311:94

    Article  Google Scholar 

  • Ádám AL, Nagy ZÁ , Kátay G, Mergenthaler E, Viczián O (2018) Signals of systemic immunity in plants: progress and open questions. Intern J Mol Sci 19(4):1146

    Article  Google Scholar 

  • Adeleke RA, Cloete TE, Bertrand A, Khasa DP (2012a) Iron ore weathering potentials of ectomycorrhizal plants. Mycorrhiza 22:535–544

    Article  CAS  PubMed  Google Scholar 

  • Adeleke RA, Cloete TE, Khasa DP (2012b) Culturable microorganisms associated with Sishen iron ore and their potential roles in biobeneficiation. World J Microbiol Biotechnol 28:1057–1070

    Article  CAS  PubMed  Google Scholar 

  • Adeleke RA, Cloete TE, Bertrands A, Khasa D (2010) Mobilization of potassium and phosphorus from iron ore by ectomycorrhizal fungi. World J Microbiol Biotechnol 26:1901–1913

    Article  CAS  Google Scholar 

  • Afridi MS, Fakhar A, Kumar A, Ali S, Medeiros FHV, Muneer MA, Ali H, Saleem M (2022) Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. Microbiol Res. https://doi.org/10.1016/j.micres.2022.127199

    Article  PubMed  Google Scholar 

  • Agnihotri VP (1970) Solubilization of insoluble phosphates by some soil fungi isolated from nursery seed beds. Can J Microbiol 16:877–880

    Article  CAS  PubMed  Google Scholar 

  • Akhami AH, Allen White R, Handakumbura PP, Jansson C (2017) Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3:233–243. https://doi.org/10.1016/j.rhisph.2017.04.012

    Article  Google Scholar 

  • Alemneh AA, Cawthray GR, Zhou Y, Ryder MH, Denton MD (2021) Ability to produce indole acetic acid is associated with improved phosphate solubilizing activity of rhizobacteria. Arch Microbiol 203:3825–3837. https://doi.org/10.1007/s00203-021-02364-w

    Article  CAS  PubMed  Google Scholar 

  • Alemneh AA, Zhou Y, Ryder MH, Denton MD (2020) Mechanisms in plant growth promoting rhizobacteria that enhance legume-rhizobial symbioses. J Appl Microbiol. https://doi.org/10.1111/jam.14754

    Article  PubMed  Google Scholar 

  • Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang M-Q (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health Implications. Toxics 9:42. https://doi.org/10.3390/toxics9030042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali AA, Awad MYM, Hegab SA, Abd El Gawad AM, Eissa MA (2021) Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J Plant Nutr 44(3):411–420. https://doi.org/10.1080/01904167.2020.1822399

    Article  CAS  Google Scholar 

  • Alori ET, Babalola OO (2018) Microbial inoculants for improving crop quality and human health in Africa. Front Microbiol 9:2213

    Article  PubMed  PubMed Central  Google Scholar 

  • Amon T, Amon B, Kryvoruchko V, Machmüller A, Hopfner-Sixt K, Bodiroza V, Hrbek R, Friedel J, Pötsch E, Wagentristl H, Schreiner M, Zollitsch W (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Biores Technol 98:3204–3212

    Article  CAS  Google Scholar 

  • Amy PS, Schulke JW, Frazier LM, Seidler RJ (1985) Characterization of aquatic bacteria and cloning genes specifying partial degradation of 2,4- dichlorophenoxy acetic acid. Appl Environ Microbiol 49:1237–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade FV, Mendonca EE, Silva IR (2013) Organic acid adsorption and mineralization in oxisols with different textures. Revista Brasileira de Ciência do Solo 37:976–985

  • Antranikian G, Gottschalk G (1982) Copurification of citrate lyase and citrate lyase ligase from Rhodopseudomonas gelatinosa and subsequent separation of the two enzymes. Eur J Biochem 126:43–47. https://doi.org/10.1111/j.1432-1033.1982.tb06743.x

    Article  CAS  PubMed  Google Scholar 

  • Aoki M, Fujii K, Kitayama K (2012) Environmental control of root exudation of low molecular-weight organic acids in tropical rainforests. Ecosystems 15:1194–1203

    Article  CAS  Google Scholar 

  • Arcand MM, Schneider KD (2006) Plant and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. Ann Braz Acad Sci 78:791–807

    Article  CAS  Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet-A Quarterly J Life Sci 10(1b):248–257

    Google Scholar 

  • Asea PEA, Kucey RWN, Stewart JWB (1988) Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol Biochem 20:459–464

    Article  CAS  Google Scholar 

  • Ashfaq M, Hassan HM, Ghazali AH, Ahmad M (2020) Halotolerant potassium solubilizing plant growth promoting rhizobacteria may improve potassium availability under saline conditions. Environ Monit Assess 192:697. https://doi.org/10.1007/s10661-020-08655-x

    Article  CAS  PubMed  Google Scholar 

  • Attia H, Alamer K, Algethami B et al (2022) Gibberellic acid interacts with salt stress on germination, growth and polyamine gene expression in fennel (Foeniculum vulgare Mill.) seedlings. Physiol Mol Biol Plants 28:607–622. https://doi.org/10.1007/s12298-022-01140-4

    Article  CAS  PubMed  Google Scholar 

  • Babu S, Rathore SS, Singh R, Kumar S, Singh VK, Yadav SK, Yadav V, Raj R, Yadav D, Shekhawat K, Wani OA (2022) Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: a review. Biores Technol 360:127566. https://doi.org/10.1016/j.biortech.2022.127566

    Article  CAS  Google Scholar 

  • Badr M, Shafei A, Sharaf El-Deen S (2006) The dissolution of K and P-bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2:5–11

    Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from Indo-gangetic plain of India. Geomicrobiol J 34:454–466

    CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9(1):26–32

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Walker TS, Schweizer H, Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40:983–995

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bakker M, Manter D, Sheflin A, Weir T, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    Article  CAS  Google Scholar 

  • Bakker PAHM, Berendsen RL, Doombos RF, Wintermans PCA, Pieterse CMJ (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, de Jonge R, Berendsen RL (2018) The soil borne legacy. Cell 172:1178–1180

    Article  CAS  PubMed  Google Scholar 

  • Balogh-Brunstad Z, Keller CK, Dickinson JT, Stevens F, Li CY, Bormannm BT (2008) Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochim Cosmochim Acta 72:2601–2618

    Article  CAS  Google Scholar 

  • Bamagoos AA, Alharby HF, Belal EE, Khalaf AEA, Abdelfattah MA, Rady MM, Ali EF, Mersal GAM (2021) Phosphate-solubilizing bacteria as a panacea to alleviate stress effects of high soil CaCO3 content in Phaseolus vulgaris with special reference to P-releasing enzymes. Sustainability 13(13):7063. https://doi.org/10.3390/su13137063

    Article  CAS  Google Scholar 

  • Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understand mineral weathering in the rhizosphere. Proc Natl Acad Sci, USA 96:3404–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banger KC, Yadav KS, Mishra MM (1985) Transformation of rock phosphate during composting and the effect of humic acid. Plant Soil 85:259–266

    Article  Google Scholar 

  • Banik S, Dey BK (1983) Alluvial soil microorganisms capable of utilizing insoluble aluminium phosphates as a sole source of phosphorus. Zentralb Microbiol 138:437–442

    CAS  Google Scholar 

  • Bao T, Sun T, Sun L (2011) Low molecular weight organic acids in root exudates and cadmium accumulation in cadmium hyperaccumulator Solanum nigrium L. and non-hyperaccumulator Solanum lycopersicum. Afr J Biotechnol 10:17180–17185

    CAS  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699

    Article  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon A (2005) Microbial co-operation in the rhizosphere. J Exp Botany 56:1761–1778

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2013) Microbial interactions in the rhizosphere. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken, pp 29–44

    Chapter  Google Scholar 

  • Barker HA (1956) Bacterial fermentations. John Wiley and Sons, New York, pp 1–27

    Book  Google Scholar 

  • Basak BB, Biswas DR (2008) Influence of potassium solubilizing microorganism (Bacillus mucilogenous) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers) grown under two alfisols. Plant Soil 317:235–255

    Article  Google Scholar 

  • Basak BB, Maity A, Ray P, Biswas DR, Roy S (2020) Potassium supply in agriculture through biological potassium fertilizer: a promising and sustainable option for developing countries. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2020.1821191

    Article  Google Scholar 

  • Batista BD, Dourado MN, Figueredo EF, Hortencio RO, Marques JPR, Piotto FA, Bonatelli ML, Settles ML, Azevedo JL, Quecine MC (2021) The auxin-producing Bacillus thuringiensis RZ2MS9 promotes the growth and modifies the root architecture of tomato (Solanum lycopersicum cv Micro-Tom). Arch Microbiol 203:3869–3882. https://doi.org/10.1007/s00203-021-02361-z

    Article  CAS  PubMed  Google Scholar 

  • Batool S, Asghar HN, Shehzad MA, Yasin S, Sohaib M, Nawaz F, Akhtar G, Mubeen K, Zahir ZA, Uzair M (2021) Zinc-solubilizing bacteria-mediated enzymatic and physiological regulations confer zinc biofortification in chickpea (Cicer arietinum L.). J Soil Sci Plant Nutr 21:2456–2471. https://doi.org/10.1007/s42729-021-00537-6

    Article  CAS  Google Scholar 

  • Baveye PC, Wander M (2019) The (bio)chemistry of soil humus and humic substances: why is the “new view” still considered novel after more than 80 years? Front Environ Sci. https://doi.org/10.3389/fenvs.2019.00027

    Article  Google Scholar 

  • Bazany KE, Wang J-T, Delgado-Baquerizo M, Singh BK, Trivedi P (2022) Water deficit affects inter-kingdom microbial connections in plant rhizosphere. Environ Microbiol. https://doi.org/10.1111/1462-2920.16031

    Article  PubMed  PubMed Central  Google Scholar 

  • Baziramakenga R, Simard RR, Leroux GD (1995) Determination of organic acids in soil extracts by ion chromatography. Soil Biol Biochem 27:349–356

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423

    Article  CAS  PubMed  Google Scholar 

  • Beller HR, Han R, Karaoz U, Lim H, Brodie EL (2013) Genomic and physiological characterization of the chromate-reducing, aquifer-derived firmicute Pelosinus sp. strain HCF1. Appl Environ Microbiol 79:63–73. https://doi.org/10.1128/AEM.02496-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellini A, Gilardi G, Idbella M, Zotti M, Pugliese M, Bonanomi G, Gullino ML (2023) Trichoderma enriched compost, BCAs and potassium phosphite control Fusarium wilt of lettuce without affecting soil microbiome at genus level. Appl Soil Ecol 182:104678. https://doi.org/10.1016/j.apsoil.2022.104678

    Article  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontr Sci Technol 11:557–574

    Article  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Köberl M, Rybakova D, Müller H, Grosch R, Smalla K (2017) Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fix050

    Article  PubMed  Google Scholar 

  • Berthelin J (1983) Microbial weathering processes. In: Krumbein WE (ed) Microbial Geochemistry. Scientific Publications, Blackwell, pp 223–262

    Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allele chemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Beyer L, Bolter M (2000) Chemical and biological properties, formation, occurrence and classification of spodic cryosols in a terrestrial ecosystem of East Antarctica (Wilkes Land). CATENA 39:95–119

    Article  CAS  Google Scholar 

  • Bhat AK, Beri V, Sidhu BS (1991) Effect of long term recycling of crop residues on soil productivity. J Indian Soc Soil Sci 39:380–383

    Google Scholar 

  • Bianco C, Defe R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211

    Article  CAS  Google Scholar 

  • Bolan NS, Elliot J, Gregg PEH, Weil S (1997) Enhanced dissolution of phosphate rocks in the rhizosphere. Biol Fertil Soils 24:169–174

    Article  CAS  Google Scholar 

  • Bollag J-M, Shuttleworth KL, Anderson DH (1988) Laccase-mediated detoxification of phenolic compounds. Appl Environ Microbiol 54:3086–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26:7–13

    Article  PubMed  Google Scholar 

  • Boro M, Sannyasi S, Chettri D, Verma AK (2022) Microorganisms in biological control strategies to manage microbial plant pathogens: a review. Arch Microbiol 204:666. https://doi.org/10.1007/s00203-022-03279-w

    Article  CAS  PubMed  Google Scholar 

  • Bouffaud ML, Renoud S, Dubost A, Moenne-Loccoz YD (2018) 1-aminocyclo-propane-1- carboxylate deaminase producers associated to maize and other Poaceae species. Microbiome 6:114. https://doi.org/10.1186/s40168-018-0503-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Brimecombe MJ, De Leij FA, Lynch JM (2001) The effect of root exudate on rhizosphere microbial populations. In: Pinton R, Varini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York, pp 95–140

    Google Scholar 

  • Broekaert WF, Delaur´SL, De Bolle MF, Cammue BP (2006) The role of ethylene in host–pathogen interactions. Annu Rev Phytopathol 44:393–416

    Article  CAS  PubMed  Google Scholar 

  • Brtnicky M, Kintl A, Hammerschmiedt T, Mustafa A, Elbl J, Kucerik J, Skladanka VT, J, Hunady I, Holatko J (2021) Clover species specific influence on microbial abundance and associated enzyme activities in rhizosphere and non-rhizosphere soils. Agronomy 11:2214. https://doi.org/10.3390/agronomy11112214

    Article  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Burén S, Rubio LM (2018) State of the art in eukaryotic nitrogenase engineering. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnx274

    Article  PubMed  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234. https://doi.org/10.1016/j.soilbio.2012.11.009

    Article  CAS  Google Scholar 

  • Calvaruso C, Turpault M, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmen B, Roberto D (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    Article  Google Scholar 

  • Carter DW, Arocena JM (2000) Soil formation under two moss species in sandy materials of central British Columbia (Canada). Geoderma 98:157–176

    Article  CAS  Google Scholar 

  • Cassman KG, Liska AJ (2007) Food and fuel for all: realistic or foolish? Biofuels Bioproducts Biorefin 1:18–23

    Article  CAS  Google Scholar 

  • Castagno LN, Estrella MJ, Sannazzaro AL, Grassano AE, Ruiz OA (2011) Phosphate solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado river basin (Argentina). J Appl Microbiol 110:1151–1165

    Article  CAS  PubMed  Google Scholar 

  • Chandra D, Srivastava R, Gupta VVSR, Franco CMM, Sharma AK (2019) Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (Triticum aestivum L.) plants. Can J Microbiol 65:387–403

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Blume HP, Beyer L (2000) Weathering of rocks induced by lichen colonization – a review. CATENA 39:121–146

    Article  CAS  Google Scholar 

  • Chen Q-L, Hu H-W, He Z-Y, Cui L, Zhu Y-G, He J-Z (2021) Potential of indigenous crop microbiomes for sustainable agriculture. Nat Food 2:233–240

    Article  CAS  Google Scholar 

  • Chen YH, Yang XZ, Zhuang LI, An XH, Li YQ, Cheng CG (2020) Efficiency of potassium-solubilizing Paenibacillus mucilaginosus for the growth of apple seedling. J Integ Agric 19(10):2458–2469

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arunshen AB, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chianese S, Fenti A, Iovino P, Musmarra D, Salvestrini S (2020) Sorption of organic pollutants by humic acids: a review. Molecules 25:918. https://doi.org/10.3390/molecules25040918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang PN, Chiu CY, Wang MK, Chen BT (2011) Low-molecular-weight organic acids exuded by millet (Setaria italica (L) Beauv) roots and their effect on the remediation of cadmium-contaminated soil. Soil Sci 176(1):33–38

    Article  CAS  Google Scholar 

  • Choi SS, Katsuyama Y, Bai LQ, Deng ZX, Ohnishi Y, Kim ES (2018) Genome engineering for microbial natural product discovery. Curr Opin Microbiol 45:53–60

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K, Moustakas K, Mikulewicz M (2022) Valorisation of agri-food waste to fertilisers is a challenge in implementing the circular economy concept in practice. Environ Pollut. https://doi.org/10.1016/j.envpol.2022.119906

    Article  PubMed  Google Scholar 

  • Christou M, Avramides EJ, Jones DL (2006) Dissolved organic nitrogen dynamics in a Mediterranean vineyard soil. Soil Biol Biochem 38:2265–2277

    Article  CAS  Google Scholar 

  • Clair SB, Lynch JP (2010) The opening of Pandora’s box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335:101–115

    Article  Google Scholar 

  • Clarholm M, Skyllberg U, Rosling A (2015) Organic acid induced release of nutrients from metal-stabilized soil organic matter - the unbutton model. Soil Biol Biochem 84:168–176. https://doi.org/10.1016/j.soilbio.2015.02.019

    Article  CAS  Google Scholar 

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions and emerging trends in microbial application. J Adv Res 19:29–37. https://doi.org/10.1016/j.jare.2019.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corwin DL (2021) Climate change impacts on soil salinity in agricultural areas. Eur J Soil Sci 72:842–862

    Article  Google Scholar 

  • Croal LR, Gralnick JA, Malasarn D, Newman DK (2004) The genetics of geochemistry. Annu Rev Genet 38:175–202

    Article  CAS  PubMed  Google Scholar 

  • Cucu MA, Gilardi G, Pugliese M, Matić S, Gisi U, Gullino ML, Garibaldi A (2019) Influence of different biological control agents and compost on total and nitrification-driven microbial communities at rhizosphere and soil level in a lettuce–Fusarium oxysporum f. sp. lactucae pathosystem. J Appl Microbiol 126:905–918

    Article  CAS  PubMed  Google Scholar 

  • Dahiya A, Chahar K, Sindhu SS (2019) The rhizosphere microbiome and biological control of weeds: A review. Spanish J Agric Res 17:e10R01

  • Dahiya A, Kumar R, Sindhu SS (2021) Microbial endophytes mediated phosphorus solubilization: Sustainable approach to improve soil fertility and plant growth. In: Maheshwari DK (ed) Endophytes: Mineral nutrients management in the series ‘Sustainable Development and Biodiversity.’ Springer Nature, Gewerbestrasse, Switzerland, pp 35–75

    Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Daniel SL, Pilsl C, Drake HL (2007) Anaerobic oxalate consumption by microorganisms in forest soils. Res Microbiol 158:303–309

    Article  CAS  PubMed  Google Scholar 

  • Das A, Baiswar P, Patel DP, Munda GC, Ghosh PK, Ngachan SV, Panwar AS, Chandra S (2010) Compost quality prepared from locally available plant biomass and their effect on rice productivity under organic production system. J Sustain Agric 34:466–482

    Article  Google Scholar 

  • Dastogeer KMG, Zahan MI, Rhaman MS, Sarker MSA, Chakraborty A (2022) Microbe-mediated thermotolerance in plants and pertinent mechanisms-a meta-analysis and review. Front Microbiol 13:833566. https://doi.org/10.3389/fmicb.2022.833566

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawson HJ, Hrutfiord BF, Ugolini FC (1984) Mobility of lichen compounds from Cladonia mitis in arctic soils. Soil Sci 138:40–45

    Article  CAS  Google Scholar 

  • De Sena A, Madramootoo CA, Whalen JK, von Sperber C (2022) Nucleic acids are a major pool of hydrolyzable organic phosphorus in arable organic soils of Southern Ontario, Canada. Biol Fertil Soils 58:7–16. https://doi.org/10.1007/s00374-021-01603-y

    Article  CAS  Google Scholar 

  • de Souza AE, Pimenta A, Feijó F, Castro R, Fasciotti M, Monteiro T, De Lima K (2018) Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora. J Appl Microbiol 124:85–96

    Article  Google Scholar 

  • de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A (2020) Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368:270

    Article  PubMed  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminium tolerance in wheat (Triticum aestivum L.) and aluminium stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demanèche S, Sanguin H, Poté J, Navarro E, Bernillon D, Mavingui P (2008) Antibiotic resistant soil bacteria in transgenic plant fields. Proc Natl Acad Sci USA 105(10):3957–3962

    Article  PubMed  PubMed Central  Google Scholar 

  • Desai S, Kumar PG, Sultana U, Pinisetty S, Ahmed MHSK, Amalraj LDE, Reddy G (2012) Potential microbial candidate strains for management of nutrient requirements of crops. Afr J Microbiol Res 6:3924–3931

    CAS  Google Scholar 

  • Dessaux Y, Grandclement C, Faure D (2016) Engineering the rhizosphere. Trends Plant Sci 21(3):266–278. https://doi.org/10.1016/j.tplants.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  • Dhaked BS, Koli GK, Triveni S, Reddy RS, Jaiswal A, Koli DK (2022) Screening of potassium and zinc solubilizing bacteria for plant growth promoting properties (PGPR) from different rhizospheric soil. Pharma Innov J 11(2):1315–1319

    CAS  Google Scholar 

  • Dheeman S, Maheshwari DK (2022) Ecology of nitrogen-fixing bacteria for sustainable development of non-legume crops. In: Maheshwari DK, Dobhal R, Dheeman S (eds), Nitrogen Fixing Bacteria: Sustainable Growth of Non-legumes. Microorganisms for Sustainability, vol 36. Springer, Singapore. pp 301–315.

  • Dijkstra FA, Zhu B, Cheng W (2021) Root effects on soil organic carbon: a double-edged sword. New Phytol 230:60–65. https://doi.org/10.1111/nph.17082

    Article  CAS  PubMed  Google Scholar 

  • Dinesh R, Srinivasan V, Hamza S, Sarathambal C, Gowda SA, Ganeshamurthy AN, Gupta SB, Nair VA, Subila KP, Lijina A, Divya VC (2018) Isolation and characterization of potential Zn solubilizing bacteria from soil and its effects on soil Zn release rates, soil available Zn and plant Zn content. Geoderma 321:173–186

    Article  CAS  Google Scholar 

  • Ding Z, Ali EF, Almaroai YA, Eissa MA, Abeed AHA (2021) Effect of potassium solubilizing bacteria and humic acid on faba bean (Vicia faba L.) plants grown on sandy loam soils. J Soil Sci Plant Nutr 21:791–800. https://doi.org/10.1007/s42729-020-00401-z

    Article  CAS  Google Scholar 

  • Dinh QT, Li Z, Tran TAT, Wang D, Liang D (2017) Role of organic acids on the bioavailability of selenium in soil: a review. Chemosphere 184:618–635. https://doi.org/10.1016/j.chemosphere.2017.06.034

    Article  CAS  PubMed  Google Scholar 

  • Dinkelaker B, Romheld V, Marschner H (1989) Citric acid exudation and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L). Plant Cell Environ 12:285–292

    Article  CAS  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere: a review. Agron Sustain Dev 32(1):227–243

    Article  Google Scholar 

  • Dotaniya ML, Meena VD (2015) Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc Natl Acad Sci India Sect B Biol Sci 85:1–12

    Article  CAS  Google Scholar 

  • Duan C, Wang Y, Wang Q, Ju W, Zhang Z, Cui Y, Beiyuan J, Fan Q, Wei S, Li S, Fang L (2022) Microbial metabolic limitation of rhizosphere under heavy metal stress: evidence from soil ecoenzymatic stoichiometry. Environ Pollut 300:118978. https://doi.org/10.1016/j.envpol.2022.118978

    Article  CAS  PubMed  Google Scholar 

  • Dubey RK, Tripathi V, Dubey PK, Singh HB, Abhilash PC (2016) Exploring rhizospheric interactions for agricultural sustainability: the need for integrative research on multi-trophic interactions. J Clean Prod 115:362–365

    Article  CAS  Google Scholar 

  • Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenh 106:85–125

    Article  CAS  Google Scholar 

  • Duff SMG, Sarath G, Plaxton WC (1994) The role of acid phosphatase in plant phosphorus metabolism. Physiol Plant 90:791–800

    Article  CAS  Google Scholar 

  • Duffy B (2003) Pathogen self-defense: Mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538

    Article  CAS  PubMed  Google Scholar 

  • Dumbrel AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Article  Google Scholar 

  • Dutton VM, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895

    Article  CAS  Google Scholar 

  • Dye C (1995) Effect of citrate and tartrate on phosphate absorption by amorphous ferric hydroxide. Fertility Res 40:129–134

    Article  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    CAS  PubMed  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd-Allah EF, Hashem A (2017a) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 28:1887

    Article  Google Scholar 

  • Egamberdieva D, Wirth S, Jabborova D, Räsänen LA, Liao H (2017b) Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J Plant Interact 12:100–107

    Article  CAS  Google Scholar 

  • Ehrlicha PR, Harteb J (2015) To feed the world in 2050 will require a global revolution. Proc Natl Acad Sci USA 112(48):14743–14744

    Article  Google Scholar 

  • Eichmann R, Richards L, Scha¨fer P, (2021) Hormones as go-betweens in plant microbiome assembly. Plant J 105:518–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Soud WA, Hegab MM, Elgawad HA, Zinta G, Asard H (2013) Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings. Plant Physiol Biochem 71:173–183

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Glick BR (2020) Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants. Environ Expt Botany 178:104124

    Article  CAS  Google Scholar 

  • Etesami H, Jeong BR, Glick BR (2021) Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria and silicon to P uptake by plant. Front Plant Sci 12:699618. https://doi.org/10.3389/fpls.2021.699618

    Article  PubMed  PubMed Central  Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by bacterium isolated by the air environment of tannery. FEMS Microbiol Lett 213:1–6

    Article  CAS  PubMed  Google Scholar 

  • Fasusi OA, Cruz C, Babalola OO (2021) Agricultural sustainability: microbial biofertilizers in rhizosphere management. Agriculture 11:163. https://doi.org/10.3390/agriculture11020163

    Article  CAS  Google Scholar 

  • Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biol 21:2082–2094

    Article  Google Scholar 

  • Fischer H, Eckhardt KU, Meyer A, Neumann G, Leinweber P, Fischer K, Kuzyakov K (2010) Rhizodeposition of maize: short-term carbon budget and composition. J Plant Nutr Soil Sci 173:67–79

    Article  CAS  Google Scholar 

  • Fischer H, Meyer H, Fischer K, Kuzyakov Y (2007) Carbohydrate and amino acid composition of dissolved organic matter leached fromsoil. Soil Biol Biochem 39:2926–2935

    Article  CAS  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): Isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Francioli D, Schulz E, Lentendu G, Wubet T, Buscot F, Reitz T (2016) Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front Microbiol. 7:1446

  • Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    Article  PubMed  Google Scholar 

  • Friedlingstein P, Jones MW, O’Sullivan M, Andrew RM, Hauck J, Peters GP, Peters W, Pongratz J, Sitch S, Le Quere C et al (2019) Global carbon budget 2019. Earth System Sci Data 11:1783–1838

    Article  Google Scholar 

  • Fujii K, Morioka M, Hangs R, Funakawa S, Kosaki T, Anderson DW (2013) Rapid turnover of organic acids in a Dystric Brunisol under a spruce–lichen forest in northern Saskatchewan, Canada. Can J Soil Sci 93:295–304

    Article  CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261(5122):754–756

    Article  CAS  PubMed  Google Scholar 

  • Galar ML, Bolardi JL (1995) Evidence for a membrane bound pyrrolquinoline quinine- linked glucose dehydrogenase in Acetobacter diazotrophicus. Appl Environ Microbiol 43:713–716

    CAS  Google Scholar 

  • Gallegos-Cedillo VM, Urrestarazu M, Álvaro JE (2016) Influence of salinity on transport of nitrates and potassium by means of the xylem sap content between roots and shoots in young tomato plants. J Soil Sci Plant Nutr 16(4):991–998

    CAS  Google Scholar 

  • Gamalero E, Bona E, Glick BR (2022) Current techniques to study plant-microbe interactions. Microorganisms 10:1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gang X, Hongbo S, Rongfu X, Nie Y, Pei Y, Sun Z, Blackwell MSA (2012) The role of root-released organic acids and anions in phosphorus transformations in a sandy loam soil from Yantai, China. Afr J Microbiol Res 6:674–679

    Google Scholar 

  • Garau G, Mele E, Castaldi P, Lauro GP, Deiana S (2015) Role of polygalactouronic acid and the cooperative effect of caffeic and malic acid on the toxicity of Cu(II) towards triticale plants (x Triticosecale Wittm). Biol Fertil Soils 51:535–544

    Article  CAS  Google Scholar 

  • Garbeva P, van Elsas JD, van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302(1):19–32

    Article  CAS  Google Scholar 

  • Garciá AC, De Souza LGA, Pereira MG, Castro RN, Garciá-Mina JM, Zonta E, Lisboa FJG, Berbara RLL (2016) Structure property-function relationship in humic substances to explain the biological activity in plants. Sci Rep. https://doi.org/10.1038/srep20798

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as biofertilizer. Omega Scientific Publications, New Delhi, p 176

    Google Scholar 

  • Geelhoed JS, van Riemsdijk WH, Findenegg GR (1999) Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite. Eur J Soil Sci 50:379–390

    Article  CAS  Google Scholar 

  • Geisseler D, Linquist BA, Lazicki PA (2017) Effect of fertilization on soil microorganisms in paddy rice systems– a meta-analysis. Soil Biol Biochem 115:452–460

    Article  CAS  Google Scholar 

  • Gerke J, Beißner L, Romer W (2000) The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. I. The basic concept and determination of soil parameters. J Plant Nutr Soil Sci 163:207–212

    Article  CAS  Google Scholar 

  • Gerke J, Rome W, Jungk A (1994) The excretion of citric and malic acid by proteoids roots of Lupinus albus L.; effects on soil solution concentrations of phosphate, iron, and aluminium in the proteoid rhizosphere in samples of an oxisol and a luvisol. Zeitsch Pflanz Bodenk 157:289–294

    Article  CAS  Google Scholar 

  • Gholamnia A, Mosleh Arani A, Sodaeizadeh H et al (2022) Expression profiling of rosmarinic acid biosynthetic genes and some physiological responses from Mentha piperita L. under salinity and heat stress. Physiol Mol Biol Plants 28:545–557. https://doi.org/10.1007/s12298-022-01159-7

    Article  CAS  PubMed  Google Scholar 

  • Ghosh D, Gupta A, Mohapatra S (2019) Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress. Symbiosis 77:265–278

    Article  CAS  Google Scholar 

  • Giesler R, Lundstrom US, Grip H (1996) Comparison of soil solution chemistry assessment using zero-tension lysimeters or centrifugation. Eur J Soil Sci 47:395–405

    Article  CAS  Google Scholar 

  • Giles CD, Richardson AE, Druschel GK, Hill JE (2012) Organic anion-driven solubilization of precipitated and sorbed phytate improves hydrolysis by phytases and bioavailability to Nicotiana tobacum. Soil Sci 177:591–598. https://doi.org/10.1097/SS.0b013e318272f83f

    Article  CAS  Google Scholar 

  • Glass DJ (1999) Economic potential of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley and Sons Inc, New York, pp 15–31

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

  • Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312. https://doi.org/10.1016/S0065-2164(04)56009-4

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. https://doi.org/10.6064/2012/963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2020) Beneficial plant-bacterial interactions, 2nd edn. Springer, Heidelberg, p 383

    Book  Google Scholar 

  • Glick BR, Gamalaro E (2021) Recent developments in the study of plant microbiomes. Microorganisms 9:1533. https://doi.org/10.3390/microorganisms9071533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR, Cheng ZY, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology 5:72–74

    CAS  Google Scholar 

  • Gomez-Zepeda D, Frausto M, Najera-Gonzalez H-R, Herrera-Estrella L, Ordaz-Ortiz J-J (2021) Mass spectrometry-based quantification and spatial localization of small organic acid exudates in plant roots under phosphorus deficiency and aluminum toxicity. The Plant J 106:1791–1806. https://doi.org/10.1111/tpj.15261

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Goyal RK, Mattoo AK, Schmidt MA (2021) Rhizobial–host interactions and symbiotic nitrogen fixation in legume crops toward agriculture sustainability. Front Microbiol 12:669404. https://doi.org/10.3389/fmicb.2021.669404

    Article  PubMed  PubMed Central  Google Scholar 

  • Goyal S, Sindhu SS (2011) Composting of rice straw using different inocula and analysis of compost quality. Microbiol J 1:126–138

    Article  Google Scholar 

  • Gregory PJ, George TS, Paterson E (2022) New methods for new questions about rhizosphere/plant root interactions. Plant Soil. https://doi.org/10.1007/s11104-022-05437-x

    Article  Google Scholar 

  • Griffiths RP, Baham JE, Caldwell BA (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biol Biochem 26:331–337

    Article  CAS  Google Scholar 

  • Gu Y, Wei J, Wang X, Friman V-P, Huang J, Wang X, Mei X, Xu Y, Shen Q, Jousset A (2016) Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biol Fertil Soils 52:997–1005

    Article  CAS  Google Scholar 

  • Guo XX, Liu HT, Wu SB (2019) Humic substances developed during organic waste composting: formation mechanisms, structural properties, and agronomic functions. Sci Total Environ 662:501–510

    Article  CAS  PubMed  Google Scholar 

  • Gupta T, Chakraborty D, Sarkar A (2021) Structural and functional rhizospheric microbial diversity analysis by cutting-edge biotechnological tools. In: Pudake RN, Sahu BB, Kumari M, Sharma AK (eds) Omics science for rhizosphere biology. Springer Nature, Singapore

    Google Scholar 

  • Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition–a review. Am J Expt Agric 3(2):374–391

    CAS  Google Scholar 

  • Hagner M, Penttinen OP, Tiilikkala K, Setälä H (2013) The effects of biochar, wood vinegar and plants on glyphosate leaching and degradation. Eur J Soil Biol 58:1–7

    Article  CAS  Google Scholar 

  • Hajiboland R, Yang XE, Römheld V, Neumann G (2005) Effect of bicarbonate on elongation and distribution of organic acids in root and root zone of Zn-efficient and Zn-inefficient rice (Oryza sativa L.) genotypes. Environ Expt Botany 54(2):163–173

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Chakrabarty PK (1991) Solubilizing of inorganic phosphates by Bradyrhizobium. Indian J Expt Biol 29:28–31

    CAS  Google Scholar 

  • Hansel CM, Fendorf S, Jardine PM, Francis CA (2008) Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol 74:1620–1633. https://doi.org/10.1128/AEM.01787-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haoliang L, Chongling Y, Jingchung L (2007) Low-molecular-weight organic acids exuded by mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in rhizosphere. Environ Expt Botany 61:159–166

    Article  Google Scholar 

  • Hartman K, van der Heijden MGA, Roussely-Provent V, Walser J-C, Schlaeppi K (2017) Deciphering composition and function of the root microbiome of a legume plant. Microbiome 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Haynes RJ (1992) Relative ability of a range of crop species to use phosphate rock and mono-calcium phosphate as P sources when grown in soil. J Sci Food Agric 60:205–211

    Article  CAS  Google Scholar 

  • Haynes RJ, Mokolobate MS (2001) Amelioration of Al toxicity and P deficiency in acid soils by addition of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutr Cycling Agroecosyst 59:47–63

  • Helyar KR (1976) Nitrogen cycling and soil acidification. J Austr Inst Agric Sci 42:217–221

    CAS  Google Scholar 

  • Henri F, Laurette NN, Annette D, John Q, Wolfgang M, François-Xavier E, Dieudonné N (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. Afric J Microbiol Res 2:171–178

    Google Scholar 

  • Hernendez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928

    Article  Google Scholar 

  • Hernández-Guzmán M, Pérez-Hernández V, Gómez-Acata S, Jiménez-Bueno N, Verhulst N, Muñoz-Arenas LC, Navarro-Noya YE, Luna-Guido ML, Dendooven L (2022) Application of young maize plant residues alters the microbiome composition and its functioning in a soil under conservation agriculture: a metagenomics study. Arch Microbiol 204:458. https://doi.org/10.1007/s00203-022-03060-z

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Hocking PJ (2001) Organic acids exuded from roots in phosphorus uptake and aluminium tolerance of plants in acid soils. Adv Agron 74:63–97

    Article  CAS  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. II: local root exudation of organic acids as a response to P starvation. Plant Soil 113:161–165

    Article  CAS  Google Scholar 

  • Hoffland E, Kuyper TW, Comans RNJ, Creamer RE (2020) Eco-functionality of organic matter in soils. Plant Soil 455:1–22. https://doi.org/10.1007/s11104-020-04651-9

    Article  CAS  Google Scholar 

  • Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang J, Subke JA (2013) Ecosystem-level controls on root-rhizosphere respiration. New Phytol 199:339–351. https://doi.org/10.1186/s13068-021-01934-w

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Long SP, Smith P, Banwart SA, Beerling DJ (2021) Technologies to deliver food and climate security through agriculture. Nature Plants 250(7):250–255

    Article  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang. China World J Microbiol Biotechnol 22(9):983–990

    Article  CAS  Google Scholar 

  • Huang R, McGrath SP, Hirsch PR, Clark IM, Storkey J, Wu L, Zhou J, Liang Y (2019) Plant–microbe networks in soil are weakened by century-long use of inorganic fertilizers. Microbiol Biotechnol 12:1464–1475

    Article  CAS  Google Scholar 

  • Huang X, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275. https://doi.org/10.1139/cjb-2013-0225

    Article  Google Scholar 

  • Hue NV, Craddock GR, Adams F (1986) Effect of organic acids on aluminium toxicity in subsoils. Soil Sci Soc Am J 50:28–34

    Article  CAS  Google Scholar 

  • Hussain A, Zahir ZA, Asghar HN, Ahmad M, Jamil M, Naveed M, Zaman Akhtar MFU (2018) Zinc solubilizing bacteria for zinc biofortification in cereals: a step toward sustainable nutritional security. Role of rhizospheric microbes in soil. Springer, Singapore, pp 203–227

    Chapter  Google Scholar 

  • Hussain A, Zahir ZA, Ditta A, Tahir MU, Ahmad M, Mumtaz MZ, Hayat K, Hussain S (2020) Production and implication of bio-activated organic fertilizer enriched with zinc-solubilizing bacteria to boost up maize (Zea mays L.) production and biofortification under two cropping seasons. Agronomy. https://doi.org/10.3390/agronomy10010039

    Article  Google Scholar 

  • Hussain S, Maqsood MA, Rahmatullah (2011) Zinc release characteristics from calcareous soils using diethyl-enetriamine-pentaacetic acid and other organic acids. Commun Soil Sci Plant Anal 42(15):1870–1881

    Article  CAS  Google Scholar 

  • Ijaz M, Ali Q, Ashraf S, Kamran M, Rehman A (2019) Development of future bioformulations for sustainable agriculture. Microbiome in plant health and disease. Springer, Berlin, pp 421–446

    Chapter  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Iram A, Berenjian A, Demirci A (2021) A review on the utilization of lignin as a fermentation substrate to produce lignin-modifying enzymes and other value-added products. Molecules 26:2960. https://doi.org/10.3390/molecules26102960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyamuremye F, Dick RP, Baham J (1996) Organic amendments and phosphorus dynamics: phosphorus chemistry and sorption. Soil Sci 161:26–435

    Google Scholar 

  • Jajoo A, Mathur S (2021) Role of arbuscular mycorrhizal fungi as an underground saviuor for protecting plants from abiotic stresses. Physiol Mol Biol Plants 27:2589–2603. https://doi.org/10.1007/s12298-021-01091-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jangu OP, Sindhu SS (2011) Differential response of inoculation with indole acetic acid producing Pseudomonas sp. in green gram (Vigna radiata L.) and black gram (Vigna mungo L.). Microbiol J 1:159–173

    Article  Google Scholar 

  • Jaroszuk-Scisel J, Tyskiewicz R, Nowak A, Ozimek E, Hanaka A, Pawlik A, Janusz G (2019) Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasite Trichoderma DEMTKZ3AO strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. Intern J Mol Sci 20(19):4923

    Article  CAS  Google Scholar 

  • Jha Y (2019) The importance of zinc-mobilizing rhizosphere bacteria to the enhancement of physiology and growth parameters for paddy under salt-stress conditions. Jordan J Biol Sci 12(2):167–173

    CAS  Google Scholar 

  • Jiang H, Li T, Han X, Yang X, He Z (2012) Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils. Environ Monitr Assessm 184:6325–6335

    Article  CAS  Google Scholar 

  • Jiao X, Takishita Y, Zhou G, Smith DL (2021) Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front Plant Sci. https://doi.org/10.3389/fpls.2021.634796

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson JF, Vance CP, Allan DL (1996) Phosphorus deficiency in Lupinus albus: altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol 112:31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DL, Brassington DS (1998) Sorption of organic acids in acid soils and its implications in the rhizosphere. Eur J Soil Sci 49:447–455

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR, Kochian LV (1996) Critical-evaluation of organic-acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil 180:57–66

    Article  CAS  Google Scholar 

  • Jones LD, Dennis PG, Owen AG, Van Hees PAW (2003) Organic acids behaviour in soils–misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Jousset A, Rochat L, Lanoue A, Bonkowski M, Keel C, Scheu S (2011) Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria. Mol Plant-Microbe Interact 24:352–358

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski BE, Schweda P (1996) Kinetics of muscovite, phlogopite and biotite dissolution and alteration at pH 1–4, room temperature. Geochim Cosmochim Acta 60:941–947

    Article  Google Scholar 

  • Kamilova F, Kravchenko LV, Shapshinkov A, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars and L-tryptophan in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 19:250–256

    Article  CAS  PubMed  Google Scholar 

  • Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Adhikari A, Lee KE, Park YG, Shahzad R, Lee IJ (2019) Gibberellin producing rhizobacteria Pseudomonas korensis mu2 enhance growth of lettuce (Lactuca sativa) and Chinese cabbage (Brassica rapa chinensis). J Microbiol Biotechnol Food Sci 9(2):166–170

    Article  CAS  Google Scholar 

  • Kang S-M, Shahzad R, Khan MA, Hasnain Z, Lee K-E, Park H-S, Kim L-R, Lee I-J (2021) Ameliorative effect of indole-3-acetic acid- and siderophore-producing Leclercia adecarboxylata MO1 on cucumber plants under zinc stress. J Plant Interact 16:30–41. https://doi.org/10.1080/17429145.2020.1864039

    Article  CAS  Google Scholar 

  • Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security–a review. Progr Nat Sci 19(12):1665–1674

    Article  Google Scholar 

  • Kaur H, Bhardwaj RD, Grewal SK (2017) Mitigation of salinity-induced oxidative damage in wheat (Triticum aestivum L.) seedlings by exogenous application of phenolic acids. Acta Physiol Plant 39:221–236

    Article  Google Scholar 

  • Kawasaki A, Dennis PG, Forstner C, Raghavendra AHH, Mathesius U, Richardson AE, Delhaize E, Gilliham M, Watt M, Ryan PR (2021) Manipulating exudate composition from root apices shapes the microbiome throughout the root system. Plant Physiol 2021:1–17. https://doi.org/10.1093/plphys/kiab337

    Article  CAS  Google Scholar 

  • Khan N, Bano A, Ali S, Babar MdA (2020) Crosstalk amongst phytohormones from plants and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203

    Article  CAS  Google Scholar 

  • Khandelwal A, Sindhu SS (2013) ACC deaminase containing rhizobacteria enhance nodulation and plant growth in clusterbean (Cyamopsis tetragonoloba L.). J Microbiol Res 3:117–123

    Google Scholar 

  • Kim SD (2012) Colonizing ability of Pseudomonas fluorescens 2112, among collections of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens spp. in pea rhizosphere. J Microbiol Biotechnol 22:763–770

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J Biosci Bioengg 109(1):47–50

    Article  CAS  Google Scholar 

  • Kochain LV (1995) Cellular mechanisms of aluminium toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  Google Scholar 

  • Kong X, Guo Z, Yao Y, Xia L, Liu R, Song H, Zhang S (2022) Acetic acid alters rhizosphere microbes and metabolic composition to improve willows drought resistance. Sci Total Environ 844:157132. https://doi.org/10.1016/j.scitotenv.2022.157132

    Article  CAS  PubMed  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK (2020) Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotech 23:101487

    Article  Google Scholar 

  • Kousar B, Bano A, Khan N (2020) PGPR Modulation of secondary metabolites intomato infested with Spodoptera litura. Agronomy 10(6):778. https://doi.org/10.3390/agronomy10060778

    Article  Google Scholar 

  • Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D (2000) Overexpression of mitochondrial citrate synthase gene in Arabidopsis thaliana improved growth on phosphorus-limited soil. Plant Cell Physiol 41:1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Koyama H, Takita E, Kawamura A, Hara T, Shibata D (1999) Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Physiol 40:482–488

    Article  CAS  PubMed  Google Scholar 

  • Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322

    Article  CAS  Google Scholar 

  • Krishanaraj PU (1987) Studies on beneficial microorganisms in crop plants. M Sc thesis, UAS, Bangalore

  • Krishanaraj PU, Sadasivam KV, Khanuja PS (1999) Mineral phosphate solubilization defective mutants of Pseudomonas sp. express pleiotropic phenotypes. Curr Sci 76:1032–1034

    Google Scholar 

  • Krzyszowska AJ, Blaylock MJ, Vance GF, David MB (1996) Ion chromatographic analysis of low molecular weight organic acids in spodosol forest floor solutions. Soil Sci Soc Am J 60:1565–1571

    Article  CAS  Google Scholar 

  • Ku Y, Xu G, Tian X, Xie H, Yang X, Cao C (2018) Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6. PLoS ONE 13(11):e0200181

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulikova NA, Perminova IV (2021) Interactions between humic substances and microorganisms and their implications for nature-like bioremediation technologies. Molecules 6:2706. https://doi.org/10.3390/molecules26092706

    Article  CAS  Google Scholar 

  • Kumar A, Chandra R (2020) Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6:e03170. https://doi.org/10.1016/j.heliyon.2020.e03170

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Dewangan S, Lawate P, Bahadur I, Prajapati S (2019) Zinc-solubilizing bacteria: a boon for sustainable agriculture. Plant growth promoting rhizobacteria for sustainable stress management. Springer, Berlin, pp 139–155

    Chapter  Google Scholar 

  • Kumar A, Meena VS, Maurya BR, Raghuwanshi R, Bisht JK, Pattanayak A (2017) Towards the biological nitrogen fixation and nitrogen management in legume under sustainable agriculture. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2017.05.013

    Article  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499. https://doi.org/10.1016/j.micres.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Chaudhary T, Diksha, Sindhu SS, Chaudhary D, Kumar R (2022a) Mycorrhizal fungi: an eco-friendly input for sustenance of soil fertility and plant health. In: Malik DK, Rathi M, Kumar R, Bhatia D (eds) Microbes for humanity and its applications. Daya Publishing House, New Delhi, pp 21–74

    Google Scholar 

  • Kumar S, Diksha, Sindhu SS, Kumar R (2022b) Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability. Curr Res Microbial Sci 3:100094. https://doi.org/10.1016/j.crmicr.2021.100094

    Article  CAS  Google Scholar 

  • Kumawat KC, Nagpal S, Sharma P (2022) Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: a review. Pedosphere 32(2):223–245. https://doi.org/10.1016/S1002-0160(21)60070-X

    Article  Google Scholar 

  • Kunamneni A, Camarero S, Garcia-Burgos C, Plou FJ, Ballesteros A, Alcalde M (2008) Engineering and applications of fungal laccases for organic synthesis. Microb Cell Factories 7:32

    Article  Google Scholar 

  • Kuzmina LY, Gilvanova EA, Galimzyanova NF et al (2022) Characterization of the novel plant growth-stimulating strain Advenella kashmirensis IB-K1 and evaluation of its efficiency in saline soil. Microbiology 91:173–183. https://doi.org/10.1134/S0026261722020072

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Leinweber P, Sapronov D, Eckhardt KU (2003) Qualitative assessment of rhizodeposits in non-sterile soil by analytical pyrolysis. J Plant Nutr Soil Sci 166:719–723

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Xu XL (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198(3):656–669

    Article  CAS  PubMed  Google Scholar 

  • Lacey MJ, Wilson CR (2001) Relationship of common seab incidence of potatoes grown in Tasmanian ferrosol soils with pH, exchangeable cations and other chemical properties of those soils. J Phytopathol 149:679–683

    Article  CAS  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TM, Van Breemen N (2001) Linking plants to rock: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–253

    Article  CAS  PubMed  Google Scholar 

  • Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Rose US (2010) de novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185:577–588

    Article  CAS  PubMed  Google Scholar 

  • Lantz M, Svensson M, Björnsson L, Börjesson P (2007) The prospects for an expansion of biogas systems in Sweden - incentives, barriers and potentials. Energy Policy 35:1830–1843

    Article  Google Scholar 

  • Laranzo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17

    Article  Google Scholar 

  • Lata SG, Pandey AK (2005) Chemical characterization of composts prepared with diversified agrowastes. Indian J Microbiol 45:245–247

    Google Scholar 

  • Leach JE, Triplett LR, Argueso CT, Trivedi P (2017) Communication in the phytobiome. Cell 169:587–596

    Article  CAS  PubMed  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG et al (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    Article  CAS  PubMed  Google Scholar 

  • Lehr P (2010) Biopesticides: The global market (Code CHM029C). BCC Research LLC. Available online at http://www.bccresearch.com/market-research (assessed on November, 2015)

  • Leyval C, Berthelin J (1993) Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol Fertil Soils 15:259–267

    Article  CAS  Google Scholar 

  • Li J, Yang H, Ann Peer W, Richter G, Blakeslee J, Bandyopadhyay A et al (2005) Arabidopsis H+ -PPase AVP1 regulates auxin-mediated organ development. Science 310:121–125

    Article  CAS  PubMed  Google Scholar 

  • Li M, Shinano T, Tadono T (1997) Distribution of exudates of lupin roots in the rhizosphere under phosphorus-deficient conditions. Soil Sci Plant Nutr 42:753–763. https://doi.org/10.1080/00380768.1997.10414731

    Article  Google Scholar 

  • Li W, Kuzyakov Y, Zheng Y, Liu M, Wu M, Dong Y, Li Z (2022) Effect of long-term fertilization on enzyme activities and microbial community composition in the rice rhizosphere. Acta Agric Scandinavica, Section B - Soil Plant Sci. https://doi.org/10.1080/09064710.2021.2011394

    Article  Google Scholar 

  • Li Y, Pei G, Qiao X, Zhu Y, Li H (2018) Remediation of cadmium contaminated water and soil using vinegar residue biochar. Environ Sci Pollut Res 25:15754–15764

    Article  CAS  Google Scholar 

  • Li Z, Fan R, Peng X et al (2022) Salicylic acid alleviates selenium stress and promotes selenium uptake of grapevine. Physiol Mol Biol Plants 28:625–635. https://doi.org/10.1007/s12298-022-01169-5

    Article  CAS  PubMed  Google Scholar 

  • Lian B, Chen Y, Zhu L, Yang R (2008) Effect of microbial weathering on carbonate rocks. Earth Sci Front 15:90–99

    Article  Google Scholar 

  • Lian B, Fu P, Mo D, Liu C (2002) A comprehensive review of the mechanism of potassium releasing by silicate bacteria. Acta Mineral Sinica 22:179–183

    CAS  Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, Xing LJ (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1(1):81–85

    Google Scholar 

  • Ling N, Zhang W, Wang D, Mao J, Huang Q, Guo S, Shen Q (2013) Root exudates from grafted watermelon showed a certain contribution in inhibiting Fusarium oxysporum sp niveum. PLoS ONE 8:e63383. https://doi.org/10.1371/journal.pone.0063383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linić I, Mlinari´c S, Brkljaˇci´c L, Pavlovi´c I, Smolko A, Salopek-Sondi B, (2021) Ferulic acid and salicylic acid foliar treatments reduce short-term salt stress in Chinese cabbage by increasing phenolic compounds accumulation and photosynthetic performance. Plants 10:2346. https://doi.org/10.3390/plants10112346

    Article  CAS  PubMed  Google Scholar 

  • Linić I, Šamec D, Grúz J, Vujˇci´c Bok V, Strnad M, Salopek-Sondi B, (2019) Involvement of phenolic acids in short-term adaptation to salinity stress is species specific among Brassicaceae. Plants 8:155

    Article  PubMed  Google Scholar 

  • Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 33:315–317

    Article  Google Scholar 

  • Liu C, Li B, Dong Y, Lin H (2022) Endophyte colonization enhanced cadmium phytoremediation by improving endosphere and rhizosphere microecology characteristics. J Hazard Mater 434:128829. https://doi.org/10.1016/j.jhazmat.2022.128829

    Article  CAS  PubMed  Google Scholar 

  • Liu JG, Qian M, Cai GL, Zhu QS, Wong MH (2007) Variations between rice cultivars in root secretion of organic acids and the relationship with plant cadmium uptake. Environ Geochem Health 29:189–195

    Article  CAS  PubMed  Google Scholar 

  • Liu ST, Lee LY, Jai CY, Hung CH, Chang YS, Wolfram JH, Rogers B, Goldstein AH (1992) Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in E. coli HB101: Nucleotide sequence and probable involvement in biosynthesis of the co-enzyme pyrrolquinoline quinine. J Bacteriol 174:5814–5819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Bucio J, de la Vega OM, Guevara-Garcia A, Herreera-Estrella I (2000) Enhanced phosphate uptake in transgenic tobacco plants that over-produce citrate. Nat Biotechnol 18:450–453

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532–540

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zhang X, Ma M et al (2022) Syringic acid from rice as a biological nitrification and urease inhibitor and its synergism with 1,9-decanediol. Biol Fertil Soils 58:277–289. https://doi.org/10.1007/s00374-021-01584-ys

    Article  CAS  Google Scholar 

  • Lukas Schütz L, Saharan K, M¨ader P, Boller T, Mathimaran N (2022) Rate of hyphal spread of arbuscular mycorrhizal fungi from pigeon pea to finger millet and their contribution to plant growth and nutrient uptake in experimental microcosms. Appl Soil Ecol 169:104156. https://doi.org/10.1016/j.apsoil.2021.104156

    Article  Google Scholar 

  • Luo Q, Sun LN, Hu XM, Zhou RR (2014) The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: Metabonomics analysis. PLoS One 9:e115581. https://doi.org/10.1371/journal.pone.0115581

  • Luo X, Wang Z, Meki K, Wang X, Liu B, Zheng H, You X, Li F (2019) Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. J Soils Sediment 19:3934–3944

    Article  CAS  Google Scholar 

  • Luo ZB, He J, Polle A, Rennenberg H (2016) Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 34(6):1131–1148

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Zheng SJ, Hiradate S, Matsumoto H (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570

    Article  Google Scholar 

  • Mahmud K, Makuju S, Ibrahim R, Missaoui A (2020) Current progress in nitrogen-fixing plants and microbiome research. Plants 9:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malmstrom M, Banwart S (1997) Biotite dissolution at 25°C: the pH dependence of dissolution rate and stoichiometry. Geochim Cosmochim Acta 61:2779–2799

    Article  CAS  Google Scholar 

  • Manasa SG, Mahadevaswamy NMN, Ramesh Y, Gundappagol RC (2019) In vitro screening of the isolates for zinc solubilization and growth promoting attributes. J Pharmac Phytochem 8(5):1205–1209

    Google Scholar 

  • Manepalli SB, Tomar S, Gaikwad DJ, Maitra S (2022) Abiotic stress signaling in plants and transgenic technology as a triumph: a review. J Appl Biol Biotechnol 10(5):5–13. https://doi.org/10.7324/JABB.2022.100501

    Article  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE 7:e48479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plants. Academic Press, London

    Google Scholar 

  • Marschner P, Fu QL, Rengel Z (2003) Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. J Plant Nutr Soil Sci 166:712–718

    Article  CAS  Google Scholar 

  • Martínez-Hidalgo P, Hirsch AM (2017) The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes J 1:70–82

    Article  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Article  Google Scholar 

  • Mavrodi OV, Mavrodi DV, Parejko JA, Thomashow LS, Weller D (2012) Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat. Appl Environ Microbiol 78:3214–3220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mažylyt e R, Kaziunien e J, Orola L, Valkovska V, Lastauskien e E, Gegeckas A (2022) Phosphate solubilizing microorganism Bacillus sp MVY-004 and its significance for biomineral fertilizers’ development in agrobiotechnology. Biology 11:254. https://doi.org/10.3390/biology11020254

    Article  CAS  Google Scholar 

  • Mazzoli R (2021) Current progress in production of building-block organic acids by consolidated bioprocessing of lignocellulose. Fermentation 7:248. https://doi.org/10.3390/fermentation7040248

    Article  CAS  Google Scholar 

  • McCarty NS, Ledesma-Amaro R (2019) Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol 37(2):181–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347. https://doi.org/10.1016/j.ecoleng.2015.04.065

    Article  Google Scholar 

  • Meena VS, Maurya B, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Melnitchouck A, Leinwebe P, Eckhardt KU, Beese R (2005) Qualitative differences between day- and night-time rhizodeposition in maize (Zea mays L.) as investigated by pyrolysis-field ionization mass spectrometry. Soil Biol Biochem 37:155–162

    Article  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, De Santis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Menezes-Blackburn D, Paredes C, Zhang H, Giles CD, Darch T, Stutter M et al (2016) Organic acids regulation of chemical-microbial phosphorus transformations in soils. Environ Sci Technol 50:11521–11531. https://doi.org/10.1021/acs.est.6b03017

    Article  CAS  PubMed  Google Scholar 

  • Mertens R, Liese A (2004) Biotechnological applications of hydrogenases. Curr Opin Biotechnol 15:43–348

    Article  Google Scholar 

  • Miller SH, Browne P, Prigent-Cambaret C, Combes-Meynet E, Morrissey JP, O’Gara F (2010) Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environ Microbiol Rep 2:403–411

    Article  CAS  PubMed  Google Scholar 

  • Mimmo T, Ghizzi M, Marzadori C, Gessa CE (2008) Organic acid extraction from rhizosphere soil: effect of field-moist, dried and frozen samples. Plant Soil 312:175–184

    Article  CAS  Google Scholar 

  • Mishra MM, Kapoor KK, Yadav KS (1982) Effect of compost enriched with Mussorie rock phosphate on crop yield. Indian J Agric Sci 52:674–678

    Google Scholar 

  • Mishra PK, Joshi P, Suyal P, Bisht JK, Bhatt JC (2014) Potential of phosphate solubilising microorganisms in crop production. Bioresources for sustainable plant nutrient management. Satish Serial Publishing House, New Delhi, pp 201–222

    Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyasaka SC, Buta JG, Howel RK, Foy CD (1991) Mechanism of aluminium tolerance in snap beans. Root exudation of citric acid. Plant Physiol 96:737–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanram S, Kumar P (2019) Rhizosphere microbiome: Revisiting the synergy of plant-microbe interactions. Ann Microbiol 69:307–320

    Article  Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461–469

    Article  CAS  PubMed  Google Scholar 

  • Moore FC, Baldos U, Hertel T, Diaz D (2017) New science of climate change impacts on agriculture implies higher social cost of carbon. Nat Commun 8:1607

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant–microbe interaction in the rhizosphere. J Expt Botany 56:1729–1739

    Article  CAS  Google Scholar 

  • Mortensen JL (1963) Complexing of metals by soil organic matter. Soil Sci Soc Am Proc 27:179–186

    Article  CAS  Google Scholar 

  • Mosher JJ, Phelps TJ, Podar M, Hurt RA, Campbell JH et al (2012) Microbial community succession during lactate amendment and electron acceptor limitation reveals a predominance of metal-reducing Pelosinus spp. Appl Environ Microbiol 78:2082–2091. https://doi.org/10.1371/journal.pone.0083909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moura FT, Ribeiro RA, Helene LCF et al (2022) So many rhizobial partners, so little nitrogen fixed: The intriguing symbiotic promiscuity of common bean (Phaseolus vulgaris L.). Symbiosis. https://doi.org/10.1007/s13199-022-00831-6

    Article  Google Scholar 

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617. https://doi.org/10.1016/j.tim.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Nacoon S, Jogloy S, Riddech N, Mongkolthanaruk W, Ekprasert J, Cooper J, Boonlue S (2021) Combination of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and production of Helianthus tuberosus under field condition. Sci Rep 11:650. https://doi.org/10.1038/s41598-021-86042-3

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Tufail MA, Asghar HN, Nazli F, Zahir ZA (2021) Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. Physiol Plant 172:463–476

    Article  CAS  PubMed  Google Scholar 

  • Naeem MS, Rasheed M, Liu D, Jin ZL (2011) 5-Aminolevulinic acid ameliorates salinity-induced metabolic, water-related and biochemical changes in Brassica napus L. Acta Physiol Plant 33:517–528

    Article  CAS  Google Scholar 

  • Nagamami B, Ramasamy K (1999) Biogas production technology: an Indian perspective. Curr Sci 77:44–54

    Google Scholar 

  • Nannipieri P, Bollag JM (1991) Use of enzymes to detoxify pesticide-contaminated soils and waters. J Environ Qual 20(3):510–517

    Article  CAS  Google Scholar 

  • Naseer I, Ahmad M, Hussain A, Jamil M (2020) Potential of zinc solubilizing Bacillus strains to improve rice growth under axenic conditions. Pak J Agric Sci 57(4):1057–1071

    Google Scholar 

  • Neumann G, Romheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    Article  CAS  Google Scholar 

  • Neumann G, Romheld V (2002) Root-induced changes in the availability of nutrients in the rhizosphere. In: Waisel Y et al (eds) Plant Roots: The Hidden Half, 3rd edn. Marcel Dekker Inc., New York, Basel, pp 617–649

    Chapter  Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene dependent signaling pathways. Mol Plant-Microbe Interact 24:533–542

    Article  CAS  PubMed  Google Scholar 

  • Novo LA, Castro PM, Alvarenga P, da Silva EF (2018) Plant growth-promoting rhizobacteria-assisted phytoremediation of mine soils. In: Prasad MNV, de Campos Favas PJ, Maiti SK (eds) Bio-Geotechnologies for Mine Site Rehabilitation. Elsevier Inc., Amsterdam, pp 281–295

    Chapter  Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, AL-Harrasi A (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    Article  CAS  PubMed  Google Scholar 

  • Nwoke OC, Diels J, Abaidoo R, Nziguheba G, Merckx R (2008) Organic acids in the rhizosphere and root characteristics of soybean (Glycine max) and cowpea (Vigna unguiculata) in relation to phosphorus uptake in poor savannah soils. Afr J Biotechnol 7:3620–3627

    CAS  Google Scholar 

  • Oburger E, Kirk GJD, Wenzel WW, Puschenreiter M, Jones DL (2009) Interactive effects of organic acids in the rhizosphere. Soil Biol Biochem 41:449–457

    Article  CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 44(1):31–43. https://doi.org/10.1017/S0021859605005708

    Article  Google Scholar 

  • Omar SA (1998) The role of rock-phosphate-solubilizing fungi and vesicular-arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microbiol Biotechnol 14:211–218

    Article  CAS  Google Scholar 

  • Oramahi HA, Yoshimura T, Diba F, Setyawati D (2018) Antifungal and antitermitic activities of wood vinegar from oil palm trunk. J Wood Sci 64:311–317

    Article  CAS  Google Scholar 

  • Orozco-Mosqueda MC, Fadiji AE, Babalola OO, Glick BR, Santoyo G (2022) Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol Res 263:127137. https://doi.org/10.1016/j.micres.2022.127137

    Article  CAS  PubMed  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang Z, Chen J, Wang T, Gao C, Li Z, Guo L, Xu J, Cheng Y (2021) Linking plant secondary metabolites and plant microbiomes: a review. Front Plant Sci 12:621276

    Article  PubMed  PubMed Central  Google Scholar 

  • Pangesti N, Reichelt M, van de Mortel JE (2016) Jasmonic acid and ethylene signaling pathways regulate glucosinolate levels in plants during rhizobacteria-induced systemic resistance against a leaf-chewing herbivore. J Chem Ecol 42:1212–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park KH, Lee CY, Son HJ (2009) Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Lett Appl Microbiol 49:222–228

    Article  PubMed  Google Scholar 

  • Parmar P, Sindhu SS (2019) The novel and efficient method for isolating potassium solubilizing bacteria from rhizosphere soil. Geomicrobiol J 36(2):130–136

    Article  CAS  Google Scholar 

  • Parvin K, Nahar K, Hasanuzzaman M, Bhuyan MB, Mohsin SM, Fujita M (2020) Exogenous vanillic acid enhances salt tolerance of tomato: Insight into plant antioxidant defense and glyoxalase systems. Plant Physiol Biochem 150:109–120

    Article  CAS  PubMed  Google Scholar 

  • Pastor V, Blamer A, Gamir J, Flors V, Mauch-Mani B (2014) Preparing to fight back: generation and storage of priming compounds. Front Plant Sci 5:1–12

    Article  CAS  Google Scholar 

  • Patel MK, Kumar M, Li W, Luo Y, Burritt DJ, Alkan N, Tran L-SP (2020) Enhancing salt tolerance of plants: from metabolic reprogramming to exogenous chemical treatments and molecular approaches. Cells 9:2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel SH, Viradiya MB, Prajapati BJ (2021) Effect of potassium and potassium mobilizing bacteria (KMB) with and without FYM on yield of wheat (Triticum aestivum L.). J Pharmac Phytochem 10(1):1615–1620

    CAS  Google Scholar 

  • Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biol 24(1):1–12

    Article  Google Scholar 

  • Pellet DM, Grunes DL, Kochain LV (1995) Organic acid exudation as an aluminium tolerance mechanism in maize (Zea mays L.). Planta 196:788–795

    Article  CAS  Google Scholar 

  • Peng Y, Duan Y, Huo W, Zhang Z, Huang D, Xu M, Wang X, Yang X, Wang B, Kuzyakov Y, Feng G (2022) C: P stoichiometric imbalance between soil and microorganisms drives microbial phosphorus turnover in the rhizosphere. Biol Fertil Soils 58:421–433. https://doi.org/10.1007/s00374-022-01633-0

    Article  CAS  Google Scholar 

  • Perminova IV, Frimmel FH, Kudryaystev AV, Kulikova NA, Abbt-Braun G, Hesse S, Petrosyan VS (2003) Molecular weight characteristics of humic substances from different environments as determined by size exclusion chromatography and their statistical evaluation. Environ Sci Technol 37:2477–2485

    Article  CAS  PubMed  Google Scholar 

  • Perumal MD, Subramanian V, Sabarinathan KG (2017) Evaluation of zinc solubilizing potential of maize rhizosphere bacterial isolates. Intern J Curr Microbiol Appl Sci 6(12):864–869

    Article  Google Scholar 

  • Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–529

    Article  CAS  PubMed  Google Scholar 

  • Phour M, Sindhu SS (2019) Bio-herbicidal effect of 5-aminoleveulinic acid producing rhizobacteria in suppression of Lathyrus aphaca weed growth. Biocontrol 64:221–232

    Article  CAS  Google Scholar 

  • Phour M, Sindhu SS (2020) Amelioration of salinity stress and growth stimulation of mustard (Brassica juncea L) by salt-tolerant Pseudomonas species. Appl Soil Ecol 149:103518. https://doi.org/10.1016/j.apsoil.2020.103518

    Article  Google Scholar 

  • Phour M, Sindhu SS (2022) Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Planta 256:85. https://doi.org/10.1007/s00425-022-03997-x

    Article  CAS  PubMed  Google Scholar 

  • Phour M, Ghai A, Rose G, Dhull N, Sindhu SS (2018) Role of aminolevulininc acid in stress adaptation and crop productivity. Intern J Curr Microbiol Appl Sci 7(5):1516–1524

    Article  Google Scholar 

  • Phour M, Sehrawat A, Sindhu SS, Glick BR (2020) Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 241:126589

    Article  CAS  PubMed  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process a review. Biol Fertil Soils 51(4):403–415

    Article  CAS  Google Scholar 

  • Pimenta AS, Fasciotti M, Monteiro TVC, Lima KMG (2018) Chemical composition of pyroligneous acid obtained from Eucalyptus GG100 clone. Molecules 23:426

    Article  PubMed  PubMed Central  Google Scholar 

  • Pimentel D (1983) Effects of pesticides on the environment. 10th International Congress on plant protection. Crydon, Vol. 2, UK, pp 685–691

  • Plekhanova IO, Kulikov VO, Shabaev VP (2022) Influence of rhizosphere bacteria on the state of heavy metal compounds in the soil–plant system. Eurasian Soil Sci 55:1306–1312. https://doi.org/10.1134/S1064229322090137

    Article  CAS  Google Scholar 

  • Pohlman AA, McColl JG (1986) Kinetics of metal dissolution from forest soils by soluble organic acids. J Environ Qual 15:86–92

    Article  CAS  Google Scholar 

  • Poole P, Ramachandran V, Terpolilli J (2018) Rhizobia: From saprophytes to endosymbionts. Nat Rev Microbiol 16:291–303

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, van Loon LC, Pieterse CMJ (2004) Jasmonates-signals in plant-microbe interactions. J Plant Growth Regul 23:211–222

    CAS  Google Scholar 

  • Pradhan N, Shukla LB (2005) Solubilization of inorganic phosphate by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    Google Scholar 

  • Prajapati K, Modi H (2012) The importance of potassium in plant growth: a review. Indian J Plant Sci 1:177–186

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leaflets 5:71–75

    Google Scholar 

  • Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23

    Article  CAS  PubMed  Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Egidi E, Liu H, Kaur S, Singh BK (2019) New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.03.010

    Article  PubMed  Google Scholar 

  • Qureshi SA, Qureshi RA, Sodha AB, Tipre DR, Dave SR (2017) Bioextraction dynamics of potassium release from feldspar by heterotrophic microorganisms isolated from ceramic and rhizospheric soil. Geomicrobiol J 34:1–4

    Google Scholar 

  • Qureshi SA, Qureshi RA, Sodha AB, Tipre DR, Dave SR (2018) Bioextraction dynamics of potassium from feldspar by heterotrophic microorganisms isolated from ceramic and rhizospheric soil. Geomicrobiol J 35(2):127–131

    Article  CAS  Google Scholar 

  • Rafique M, Naveed M, Mustafa A, Akhtar S, Munawar M, Kaukab S, Ali HM, Siddiqui MH, Salem MZ (2021) The combined effects of gibberellic acid and rhizobium on growth, yield and nutritional status in chickpea (Cicer arietinum L.). Agronomy. https://doi.org/10.3390/agronomy11010105

    Article  Google Scholar 

  • Raghu S, Kumar S, Suyal DC, Sahu B, Kumar V, Soni R (2021) Molecular tools to explore rhizosphere microbiome. In: Nath M, Bhatt D, Bhargava P, Choudhary DK (eds) Microbial metatranscriptomics belowground. Springer Nature, Singapore

    Google Scholar 

  • Ragothama KG (1999) Phosphate acquisition. Ann Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phyto-extraction. Trends Microbiol 8:142–149

    Google Scholar 

  • Raklami A, Bechtaoui N, Tahiri AI, Slimani A, Bargaz A, Meddich A, Oufdou K (2021) Co-inoculation with rhizobacteria and mycorrhizae can improve wheat/faba bean intercrop performance under field conditions. Front Agron 3:734923. https://doi.org/10.3389/fagro

    Article  Google Scholar 

  • Rasouli-Sadaghiani M, Sadeghzadeh B, Sepehr E, Rengel Z (2011) Root exudation and zinc uptake by barley genotypes differing in Zn efficiency. J Plant Nutri 34(8):1120–1132

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424

    Article  CAS  PubMed  Google Scholar 

  • Renella G, Landi L, Nannipieri P (2004) Degradation of low-molecular weight organic acids complexed with heavy metals in soil. Geoderma 122:311–315

    Article  CAS  Google Scholar 

  • Ritchie GSP, Dolling PJ (1985) The role of organic matter in soil acidification. Aust J Soil Res 23:569–576

    Article  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555

    Article  CAS  PubMed  Google Scholar 

  • Rohrbacher F, St-Arnaud M (2016) Root exudation: The ecological driver of hydrocarbon rhizoremediation. Agronomy 6:19

    Article  Google Scholar 

  • Ronson CW, Bosworth A, Genova M, Gudbrandsen S, Hankinson T, Kwiatkowski R, Ratcliffe H, Robie C, Sweeney P, Szeto W, Williams M (1990) Field release of genetically-engineered Rhizobium meliloti and Bradyrhizobium japonicum strains. Nitrogen Fixation. Springer, Boston, MA, pp 397–403

    Chapter  Google Scholar 

  • Rosa PAL, Galindo FS, Oliveira CEDS, Jalal A, Mortinho ES, Fernandes GC, Marega EMR, Buzetti S, Teixeira Filho MCM (2022) Inoculation with plant growth-promoting bacteria to reduce phosphate fertilization requirement and enhance technological quality and yield of sugarcane. Microorganisms 10:192. https://doi.org/10.3390/microorganisms10010192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Delhaise E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110

    Article  CAS  Google Scholar 

  • Ryan P, Tyerman S, Sasaki T, Furuichi T, Yamamoto Y, Zhang W, Delhaize E (2011) The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J Expt Botany 62:9–20

    Article  CAS  Google Scholar 

  • Rygiewicz PT, Andersen CP (1994) Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369:58–60

    Article  Google Scholar 

  • Saboor A, Ali MA, Husain S, Tahir MS, Irfan M, Bilal M, Baig KS, Datta R, Ahmed N, Danish S, Glick BR (2021) Regulation of phosphorus and zinc uptake in relation to arbuscular mycorrhizal fungi for better maize growth. Agronomy 11:2322. https://doi.org/10.3390/agronomy11112322

    Article  CAS  Google Scholar 

  • Sammauria R, Kumawat S, Kumawat P et al (2020) Microbial inoculants: potential tool for sustainability of agricultural production systems. Arch Microbiol. https://doi.org/10.1007/s00203-019-01795-w

    Article  PubMed  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontr Sci Technol 22:855–872

    Article  Google Scholar 

  • Santoyo G, Sánchez-Yáñez JM, de los Santos-Villalobos S (2019) Methods for detecting biocontrol and plant growth-promoting traits in rhizobacteria. In: Methods in rhizosphere biology research. Springer, Singapore. pp 133–149

  • Sarathambal C, Thangaraju M, Paulraj C, Gomathy M (2010) Assessing the zinc solubilization ability of Gluconacetobacter diazotrophicus in maize rhizosphere using labelled Zn compounds. Indian J Microbiol 50(1):103–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan VS, Kumar MR, Sa TM (2011) Microbial zinc solubilization and their role on plants. Bacteria in Agrobiology: Plant nutrient management. Springer, Berlin, pp 47–63

    Chapter  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007a) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2007b) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microbial Ecol 55:130–140

    Article  Google Scholar 

  • Sarmiento-López LG, López-Meyer M, Maldonado-Mendoza IE, Quiroz-Figueroa FR, Sepúlveda-Jiménez G, Rodríguez-Monroy M (2022) Production of indole-3-acetic acid by Bacillus circulans E9 in a low-cost medium in a bioreactor. J Biosci Bioeng. https://doi.org/10.1016/j.jbiosc.2022.03.007

    Article  PubMed  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41

    Article  CAS  PubMed  Google Scholar 

  • Savka MA, Dessaux Y, McSpadden Gardener BB, Mondy S, Kohler PRA, de Bruijn FJ, Rossbach S (2013) The “biased rhizosphere” concept and advances in the omics era to study bacterial competitiveness and persistence in the phytosphere. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, 1 & 2. John Wiley and Sons Inc., Hoboken, pp 1145–1161

    Chapter  Google Scholar 

  • Schievano A, D’Imporzano G, Adani F (2009) Substituting energy crops with organic wastes and agro-industrial residues for biogas production. J Environ Manag 90:2537–2541

    Article  CAS  Google Scholar 

  • Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Interact 28:212–217

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • Schulz H, Vetterlein D (2007) Analysis of organic acids concentration with time in small soil-solution samples from the rhizosphere of maize (Zea mays L.). J Plant Nutr Soil Sci 170:640–644

    Article  CAS  Google Scholar 

  • Sehrawat A, Sindhu SS (2019) Potential of biocontrol agents in plant disease control for improving food safety. Def Life Sci J 4:220–225

    Article  Google Scholar 

  • Sehrawat A, Khandelwal A, Sindhu SS (2020) Characterization of Mesorhizobium strains for salt tolerance and wilt control: their potential for plant growth promotion of chickpea (Cicer arietinum L.). Legume Res 43(1):146–150

  • Sehrawat A, Phour M, Kumar R, Sindhu SS (2021) Bioremediation of pesticides: an eco-friendly approach for environmental sustainability. In: Panpatte DG, Jhala YK (eds) Microbial Rejuvenation of Polluted Environment Microorganisms for Sustainability. Springer Nature Singapore Pte Ltd, Singapore, pp 23–84

    Chapter  Google Scholar 

  • Sehrawat A, Sindhu SS, Glick BR (2022) Hydrogen cyanide production by soil bacteria: biological control of pests and plant growth promotion. Pedosphere 32(1):15–38. https://doi.org/10.1016/S1002-0160(21)60058-9

  • Seitz VA, McGivern BB, Daly RA, Chaparro JM, Borton MA, Sheflin AM, Kresovich S, Shields L, Schipanski ME, Wrighton KC, Prenni JE (2022) Variation in root exudate composition influences soil microbiome membership and function. Appl Environ Microbiol 88:11. https://doi.org/10.1128/aem.00226-22

    Article  CAS  Google Scholar 

  • Shahid M, Hameed S, Imran A, Ali S, van Elsas JD (2012) Root colonization and growth promotion of sunflower (Helianthus annuus L) by phosphate solubilizing Enterobacter sp Fs-11. World J Microbiol Biotechnol 28(8):2749–2758

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Sindhu S, Sindhu SS (2018a) Suppression of Alternaria blight disease and plant growth promotion of mustard (Brassica juncea L.) by antagonistic rhizosphere bacteria. Appl Soil Ecol 129:145–150

    Article  Google Scholar 

  • Sharma R, Sindhu S, Sindhu SS (2018b) Bioinoculation of mustard (Brassica juncea L.) with beneficial rhizobacteria: a sustainable alternative to improve crop growth. Intern J Curr Microbiol Appl Sci 7(5):1375–1386

    Article  Google Scholar 

  • Sheng X (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, Huang WY (2002) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39:863–871

    CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng Y, Benmati M, Guendouzi S, Benmati H, Yuan Y, Song J, Xia C, Berkani M (2022) Latest eco-friendly approaches for pesticides decontamination using microorganisms and consortia microalgae: a comprehensive insights, challenges, and perspectives. Chemosphere 308:136183. https://doi.org/10.1016/j.chemosphere.2022.136183

    Article  CAS  PubMed  Google Scholar 

  • Silambarasan S, Logeswari P, Sivaramakrishnan R, Cornejo P, Sipahutar MK, Pugazhendhi A (2022) Amelioration of aluminum phytotoxicity in Solanum lycopersicum by co-inoculation of plant growth promoting Kosakonia radicincitans strain CABV2 and Streptomyces corchorusii strain CASL5. Sci Total Environ 832:154935. https://doi.org/10.1016/j.scitotenv.2022.154935

    Article  CAS  PubMed  Google Scholar 

  • Silva R, Lopes N, Silva D (2016) Application of MALDI mass spectrometry in natural products analysis. Planta Med 82(08):671–689. https://doi.org/10.1055/s-0042-104800

    Article  CAS  PubMed  Google Scholar 

  • Simine DC, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils 28:87–94

    Article  Google Scholar 

  • Sindhu SS, Sharma R (2019) Amelioration of biotic stress by application of rhizobacteria for agriculture sustainability. In: Sayyed RZ, Tabassum B (eds) Plant Growth Promoting rhizobacteria for sustainable stress management microorganisms for sustainability. Springer Nature Pte Ltd, Singapore, pp 111–168

    Google Scholar 

  • Sindhu D, Sindhu S (2019) Image processing technology application for early detection and classification of plant diseases. Intern J Computer Sci Engr 7(5):92–97

    Google Scholar 

  • Sindhu D, Hooda E, Sindhu S, Yadav SK (2021a) Development of novel predictive models for estimation of nitrogen fixation under cultural and field conditions using R software. Intern J Adv Trends Computer Sci Engin 10(4):2704–2713

    Article  Google Scholar 

  • Sindhu SS (2004) Biological nitrogen fixation. In: Narwal SS, Dahiya SS, Singh JP (eds) Research Methods in Plant Sciences: Allelopathy, vol 1. Soil Analysis. Scientific Publishers, Jodhpur, pp 326–342

    Google Scholar 

  • Sindhu SS, Dadarwal KR (1986) Ex planta nitrogenase induction and uptake hydrogenase in Rhizobium sp. (cowpea miscellany). Soil Biol Biochem 18:291–295

    Article  CAS  Google Scholar 

  • Sindhu SS, Dadarwal KR (1995) Molecular biology of nodule development and nitrogen fixation in Rhizobium-legume symbiosis. In: Srivastava HS, Singh RP (eds) Nitrogen fixation in higher plants. Associated Publishing Company, New Delhi, pp 57–129

    Google Scholar 

  • Sindhu SS, Dadarwal KR (2000) Competition for nodulation among rhizobia in legume-Rhizobium symbiosis. Indian J Microbiol 40(4):211–246

    Google Scholar 

  • Sindhu SS, Dadarwal KR, Davis TM (1992) Non-nodulating chickpea breeding line for the study of symbiotic nitrogen fixation potential. Indian J Microbiol 32:175–180

    Google Scholar 

  • Sindhu SS, Jangu OP, Sivaramaiah N (2010) Genetic engineering of diazotrophic bacteria to improve nitrogen fixation for sustainable agriculture. In: Sayyed RZ, Patil AS (eds) Biotechnology: emerging trends. Scientific Publishers, Jodhpur, pp 73–112

    Google Scholar 

  • Sindhu SS, Malik DK, Dadarwal KR (2003) Enhancing the potential of biological nitrogen fixation by genetic manipulation of diazotrophic bacteria for sustainable agriculture. In: Singh RP, Jaiwal PK (eds) Plant genetic engineering, vol I. Applications and Limitation. Science & Technology Publishers, LCC Houston, USA, pp 199–228

    Google Scholar 

  • Sindhu SS, Parmar P, Phour M (2014a) Nutrient cycling: Potassium solubilization by microorganisms and improvement of crop growth. Geomicrobiology and biogeochemistry. Springer, Berlin, pp 175–198

    Chapter  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Verma JP, Maurya BR, Meena RS (eds) Potassium Solubilizing Microbes (KSMs). Springer-Verlag, Berlin, Heidelberg, pp 171–185

    Google Scholar 

  • Sindhu SS, Phour M, Choudhary SR, Chaudhary D (2014b) Phosphorus cycling: prospects of using rhizosphere microorganisms for improving phosphorus nutrition of plants. Geomicrobiology and Biogeochemistry. Springer, Berlin, Heidelberg, pp 199–237

    Chapter  Google Scholar 

  • Sindhu SS, Sehrawat A, Phour M, Kumar R (2022) Nutrient acquisition and soil fertility: Contribution of rhizosphere microbiomes in sustainable agriculture. In: Arora NK, Bouizgarne B (eds) Microbial BioTechnology for Sustainable Agriculture, vol 1. Microorganisms for Sustainability, Vol 33. Springer Nature Pte Ltd., Singapore, pp 1–41

    Google Scholar 

  • Sindhu SS, Sehrawat A, Sharma R, Khandelwal A (2017a) Biological control of insect pests for sustainable agriculture. In: Adhya TK, Mishra BB, Annapurna K, Verma DK, Kumar U (eds) Advances in Soil Microbiology: Recent Trends and Future Prospects. Springer, Singapore, pp 189–218

    Chapter  Google Scholar 

  • Sindhu SS, Sehrawat A, Sharma R, Dahiya A, Khandelwal A (2017b) Belowground microbial crosstalk and rhizosphere biology. In: Singh DP, Singh HB, Prabha R (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore, pp 695–752

    Google Scholar 

  • Sindhu SS, Sharma R, Sindhu S, Phour M (2019a) Plant nutrient management through inoculation of zinc solubilizing bacteria for sustainable agriculture. In: Giri B, Prasad R, Wu QS, Verma A (eds) Biofertilizers for Sustainable Agriculture and Environment. Springer Nature Pte Ltd., Singapore, pp 173–201

    Chapter  Google Scholar 

  • Sindhu SS, Sharma R, Sindhu S, Sehawat A (2019b) Soil fertility improvement by symbiotic rhizobia for sustainable agriculture. In: Panpatte DG, Jhala VK (eds) Soil fertility management for sustainable development. Springer Nature Pte Ltd., Singapore, pp 101–166

    Chapter  Google Scholar 

  • Sindhu SS, Suneja S, Dadarwal KR (1997) Plant growth promoting rhizobacteria and their role in crop productivity. In: Dadarwal KR (ed) Biotechnological Approaches in Soil Microorganisms for Sustainable Crop Production. Scientific Publishers, Jodhpur, India, pp 149–191

    Google Scholar 

  • Sindhu SS, Verma MK, Mor S (2009) Molecular genetics of phosphate solubilization in rhizosphere bacteria and its role in plant growth promotion. Nova Science Publishers, USA, pp 199–228

    Google Scholar 

  • Sindhu SS, Verma N, Goyal S (2013) Ecofriendly utilization of crop residues and organic waste material. In: Garg SR (ed) Human and Animal Health: Environmental Perspectives. Satish Serial Publishing House, New Delhi, pp 385–404

    Google Scholar 

  • Sindhu S, Dahiya A, Gera R, Sindhu SS (2020) Mitigation of abiotic stress in legume-nodulating rhizobia for sustainable crop production. Agric Res 9:444–459

    Article  CAS  Google Scholar 

  • Sindhu S, Sindhu D, Yadav SK (2021b) Data mining and phylogenetic analysis of NifH protein of Azospirillum strain among nitrogen-fixing bacteria using bioinformatics tools. Intern J Computer Sci Engin 9(1):1–10

    Google Scholar 

  • Sindhu SS, Sharma R (2020) Plant growth promoting rhizobacteria (PGPR): Asustainable approach for managing soil fertility and crop productivity. In: Malik DK, Rathi M, Kumar R, Bhatia M (eds) Microbes for Humankind and Applications. Astral International, New Delhi, pp 97–130

    Google Scholar 

  • Singh B (2018) Are nitrogen fertilizers deleterious to soil health? Agronomy 89(4):48. https://doi.org/10.3390/agronomy8040048

    Article  CAS  Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Prasanna R, Kar A, Singh AM, Saxena AK (2018) Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield and micronutrient content. Ann Microbiol 68(12):815–833

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Dhanjal DS, Dhaka SV, Thotapalli S, Singh J, Anil LKT, Aguilar-Marcelino L (2021) Rhizosphere biology: A key to agricultural sustainability. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current Trends in Microbial Biotechnology for Sustainable Agriculture. Environmental and Microbial Biotechnology, Springer Nature, Singapore

    Google Scholar 

  • Singh UP, Sarma BK, Singh DP (2003) Effect of plant growth-promoting rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum). Curr Microbiol 46:131–140

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Singh D, Gautam JK, Nandi AK (2019) RS11/FLD is a positive regulator for defence against necrotrophic pathogens. Physiol Mol Plant Pathol 107:40–45

    Article  CAS  Google Scholar 

  • Sivaram AK, Panneerselvan L, Mukunthan K, Megharaj M (2022) Effect of pyroligneous acid on the microbial community composition and plant growth-promoting bacteria (PGPB) in soils. Soil Syst 6:10. https://doi.org/10.3390/soilsystems6010010

    Article  CAS  Google Scholar 

  • Smercina DN, Evans SE, Friesen ML, Tiemann LK (2019) To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere. Appl Environ Microbiol 85(6):e02546-e2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smil V (1999) Nitrogen in crop production: an account of global flows. Glob Biog Cycl 13:647–662

    Article  CAS  Google Scholar 

  • Smith MR, Mah RA (1978) Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl Environ Microbiol 36:870–879

  • Smith SE, Read D (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Soetan K, Olaiya C, Oyewole O (2010) The importance of mineral elements for humans, domestic animals and plants–a review. Afr J Food Sci 4:200–222

    CAS  Google Scholar 

  • Sokol NW, Kuebbing SE, Karlsen-Ayala E, Bradford MA (2018) Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol 221:233–246. https://doi.org/10.1111/nph.15361

    Article  CAS  PubMed  Google Scholar 

  • Sparks DL (1987) Potassium dynamics in soils. Adv Soil Sci 6:1–63

    Article  CAS  Google Scholar 

  • Staunton S, Leprince F (1996) Effect of pH and some organic anions on the solubility of soil phosphate: implications for P bioavailability. Eur J Soil Sci 47:231–239

    Article  CAS  Google Scholar 

  • Stevenson FJ, Vance GF (1989) Naturally occurring aluminium–organic complexes. In: Sposito G (ed) The environmental chemistry of aluminium. CRC Press, Boca Raton, pp 117–146

    Google Scholar 

  • Strobel BW, Borggaard OK, Hansen HCB, Andersen MK, Raulund-Rasmussen K (2005) Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil. Eur J Soil Sci 56:189–196

    Article  CAS  Google Scholar 

  • Strobel BW (2001) Influence of vegetation on low-molecular-weight carboxylic acids in soil solution–a review. Geoderma 99:169–198

    Article  CAS  Google Scholar 

  • Strom L, Owen AG, Godbold DL, Jones DL (2002) Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biol Biochem 34:703–710

    Article  CAS  Google Scholar 

  • Sun Y, Xiao J, Jia X, Ke P, He L, Cao A, Wang H, Wu Y, Gao X, Wang X (2016) The role of wheat jasmonic acid and ethylene pathways in response to Fusarium graminearum infection. Plant Growth Regul 80(1):69–77

    Article  CAS  Google Scholar 

  • Suthipradit S, Edwards DG, Asher CJ (1990) Effects of aluminium on taproot elongation of soybean (Glycine max), cowpea (Vigna unguiculata) and green gram (Vigna radiata) grown in the presence of organic acids. Plant Soil 124:233–237

    Article  CAS  Google Scholar 

  • Tadano T, Sakai H (1991) Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions. Soil Sci Plant Nutr 37:129–140

    Article  CAS  Google Scholar 

  • Taha SM, Mahamood SAZ, Halim EI, Damaty A, Hafez AM (1969) Activity of phosphate dissolving bacteria in Egyptian soils. Plant Soil 31:149–160

    Article  Google Scholar 

  • Tandon A, Fatima T, Anshu Shukla D, Tripathi P, Srivastava S, Singh PC (2020) Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions. JKSUS 32(1):791–798

    Google Scholar 

  • Tandon HLS (1995) Recycling of Crop, Animal, Human and Industrial Wastes in Agriculture. Fertilizer Development and consultation Organization, New Delhi, pp 148

  • Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for zinc mobilization in rice. Pak J Bot 39:245–253

    Google Scholar 

  • Tchan YT, Kennedy IR (1989) Possible nitrogen-fixing root nodules induced in non-legumes. Agric Sci 2:57–59

    Google Scholar 

  • Tejaswini MSSR, Pathak P, Gupta DK (2022) Sustainable approach for valorization of solid wastes as a secondary resource through urban mining. J Environ Manag 319:115727. https://doi.org/10.1016/j.jenvman.2022.115727

    Article  CAS  Google Scholar 

  • Tesfaye M, Dufault NS, Dornbusch M, Allan D, Vance CP, Samac DA (2003) Influence of enhanced malate dehydrogenase expression by alfalfa on diversity of rhizobacteria and soil nutrient availability. Soil Biol Biochem 35(8):1103–1113

    Article  CAS  Google Scholar 

  • Thangavel P, Anjum NA, Muthukumar T, Sridevi G, Vasudhevan P, Maruthupandian A (2022) Arbuscular mycorrhizae: natural modulators of plant–nutrient relation and growth in stressful environments. Arch Microbiol 204:264. https://doi.org/10.1007/s00203-022-02882-1

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Eggermont K, Penninckx IA, Mauch-Mani B, Vogelsang R, Cammue BP, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95(25):15107–15111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian B, Pei Y, Huang W, Ding J, Siemann E (2021) Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. ISME J 15:1919–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tisa LS, Oshone R, Sarkar I, Ktari A, Sen A, Gtari M (2016) Genomic approaches toward understanding the actinorhizal symbiosis, an update on the status of the Frankia genomes. Symbiosis 70:5–16

    Article  CAS  Google Scholar 

  • Tiziani R, Miras-Moreno B, Malacrinò A, Vescio R, Lucini L, Mimmo T, Cesco S, Sorgonà A (2022) Drought, heat, and their combination impact the root exudation patterns and rhizosphere microbiome in maize roots. Environ Expert Botany 203:105071. https://doi.org/10.1016/j.envexpbot.2022.105071

    Article  CAS  Google Scholar 

  • Tkacz A, Pini F, Turner TR, Bestion E, Simmonds J, Greenland A, Cheema J, Emms DM, Uany C, Poole PSP (2020) Agricultural selection of wheat has been shaped by plant-microbe interctions. Front Microbiol 11:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokonami Y, Funao T, Oga T, Nishida M, Takahashi T, Asakawa S (2022) Estimation of turnover time of microbial biomass potassium in paddy field soil. Soil Sci Plant Nutr 68(2):275–283. https://doi.org/10.1080/00380768.2022.2045553

    Article  CAS  Google Scholar 

  • Toro M, Azcon R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torsvik V, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities–a review. J Indus Microbiol Biotechnol 17(3–4):170–178

    Article  CAS  Google Scholar 

  • Troufflard S, Mullen W, Larson TR, Graham IA, Crozier A, Amtmann A, Armengaud P (2010) Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. BMC Plant Biol 10:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsegaye Z, Assefa F, Beyene D (2017) Properties and application of plant growth promoting rhizobacteria. Intern J Curr Trend Pharmacobiol Med Sci 2(1):30–43

    Google Scholar 

  • Tsoi R, Dai Z, You L (2019) Emerging strategies for engineering microbial communities. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah C, Tsai CJ, Unsicker SB, Xue L, Reichelt M, Gershenzon J, Hammerbacher A (2019) Salicyclic acid activates poplar defence against the biotrophic rust fungus Melamspora larcipopulinavia increased biosynthesis of catechin and pro-anthocyanidins. New Phytol 221(2):960–975

    Article  CAS  PubMed  Google Scholar 

  • Ulusoy Y, Ulukardesler AH, Unal H, Alibas K (2009) Analysis of biogas production in Turkey utilizing three different materials and two scenarios. Afr J Agric Res 4:996–1003

    Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) The microbial weathering of soil minerals, ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uroz S, Oger P, Lepleux C, Collignon C, Frey-Klett P, Turpault MP (2011) Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystem. Res Microbiol 162:820–831

    Article  CAS  PubMed  Google Scholar 

  • Utami YD, Nguyen TAN, Hiruma K (2022) Investigating plant–microbe interactions within the root. Arch Microbiol 204:639. https://doi.org/10.1007/s00203-022-03257-2

    Article  CAS  PubMed  Google Scholar 

  • Vaid SK, Srivastava PC, Pachauri SP, Sharma A, Rawat D, Shankhadhar SC, Shukla AK (2020) Effective zinc mobilization to rice grains using rhizobacterial consortium. Israel J Plant Sci 67(3–4):145–157

    Article  Google Scholar 

  • Van Breemen N, Finlay R, Lundstrom US, Jongmans AG, Giesler R, Melkerud PA (2000) Mycorrhizal weathering: a true case of mineral plant nutrition. Biogeochemistry 49:53–67

    Article  Google Scholar 

  • Van Hees PAW, Vinogradoff SI, Edwards AC, Godbold DL, Jones DL (2003) Low molecular weight organic acid adsorption in forest soils: effects on soil solution concentrations and biodegradation rates. Soil Biol Biochem 35:1015–1026

    Article  Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • van Schie BJ, Hellingwerf KE, Vandijkan J, Elferink MGL, Van Diji JM, Kuenen JG, Konigns N (1985) Energy transduction by electron transfer via a pyrroquinoline quinine dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa and Acinetobacter calcoaceticum (var. Lowoffi). J Bacteriol 163:493–499

    Article  PubMed  PubMed Central  Google Scholar 

  • van Scholl L, Kuyper T, Smits M, Landeweert R, Hoffland E, Breemen N (2008) Rockeating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303:35–47

    Article  Google Scholar 

  • Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197

    Article  CAS  Google Scholar 

  • Veremeichik GN, Shkryl YN, Rusapetova TV, Silantieva SA, Grigorchuk VP, Velansky PV, Brodovskaya EV, Konnova YA, Khopta AA, Bulgakov DV, Bulgakov VP (2022) Overexpression of the A4-rolB gene from the pRiA4 of Rhizobium rhizogenes modulates hormones homeostasis and leads to an increase of flavonoid accumulation and drought tolerance in Arabidopsis thaliana transgenic plants. Planta 256:8. https://doi.org/10.1007/s00425-022-03927-x

    Article  CAS  PubMed  Google Scholar 

  • Verma N, Wati L, Sindhu SS, Goyal S (2014) Organic waste utilization for production of compost and biofuel. In: Nagpal R, Ashwani K, Singh R (eds) Microbes in the service of mankind: Tiny bugs with huge impact. JBC Press, New Delhi, pp 95–124

    Google Scholar 

  • Verma R, Maurya BR, Meena VS, Dotaniya ML, Deewan P, Jajoria M (2017) Enhancing production potential of cabbage and improves soil fertility status of Indo-Gangetic plain through application of bio-organics and mineral fertilizer. Intern J Curr Microbiol Appl Sci 6:301–309

    CAS  Google Scholar 

  • Vidyashree DN, Muthuraju R, Panneerselvam P, Mitra D (2018) Organic acids production by zinc solubilizing bacterial isolates. Intern J Curr Microbiol Appl Sci 7(10):626–633

    Article  CAS  Google Scholar 

  • Vives-Peris V, de Ollas C, Gomez-Cadenas A, Perez-Clemente RM (2020) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 30:3–17

    Article  Google Scholar 

  • Vocciante M, Grifoni M, Fusini D, Petruzzelli G, Franchi E (2022) The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Appl Sci 12:1231. https://doi.org/10.3390/app12031231

    Article  CAS  Google Scholar 

  • Von Dahl CC, Baldwin IT (2007) Deciphering the role of ethylene in plant-herbivore interactions. J Plant Growth Regul 26:201–209

    Article  CAS  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and palnt growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174. https://doi.org/10.1186/1471-2180-9-174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahid F, Fahad S, Danish S, Adnan M, Yue Z, Saud S, Siddiqui MH, Brtnicky M, Hammerschmiedt T, Datta R (2020) Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture 10(8):334

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotwold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan YY, Zhang Y, Zhang L, Zhou ZQ, Li X, Shi Q, Wang XJ, Bai JG (2015) Caffeic acid protects cucumber against chilling stress by regulating antioxidant enzyme activity and proline and soluble sugar contents. Acta Physiol Plant 37:1706–1715

    Article  Google Scholar 

  • Wang B, Li L, Liu M, Peng D, Wei A, Hou B, Lei Y, Li X (2022a) TaFDL2-1A confers drought stress tolerance by promoting ABA biosynthesis, ABA responses, and ROS scavenging in transgenic wheat. Plant J. https://doi.org/10.1111/tpj.15975

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang CB, Bian DR, Jiang N, Xue H, Piao C-G, Li Y (2022b) Rhizobium quercicola sp. nov., isolated from the leaf of Quercus variablis in China. Arch Microbiol. https://doi.org/10.1007/s00203-022-03188-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D, Dong W, Murray J, Wang E (2022c) Innovation and appropriation in mycorrhizal and rhizobial symbioses. Plant Cell. https://doi.org/10.1093/plcell/koac039

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D, Lv S, Jiang P, Li Y (2017) Roles, regulation, and agricultural application of plant phosphate transporters. Front Plant Sci 8:817

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang M, Xie X, Guo S, Zhou Y, Zhang X, Yu N, Wang E (2020) An amplification selection model for quantified rhizosphere microbiota assembly. Sci Bullet 65:983–986

    Article  Google Scholar 

  • Wang Y, Liu H, Shen Z, Miao Y, Wang J, Jiang X, Shen Q, Li R (2022d) Richness and antagonistic effects co-affect plant growth promotion by synthetic microbial consortia. Appl Soil Ecol 170:104300. https://doi.org/10.1016/j.apsoil.2021.104300

    Article  Google Scholar 

  • Wang Y, Luo D, Xiong Z, Wang Z, Gao M (2023) Changes in rhizosphere phosphorus fractions and phosphate-mineralizing microbial populations in acid soil as influenced by organic acid exudation. Soil till Res 225:105543. https://doi.org/10.1016/j.still.2022.105543

    Article  Google Scholar 

  • Ward OP, Singh A (2002) Bioethanol technology: developments and perspectives. Adv Appl Microbiol 51:53–80

    Article  CAS  PubMed  Google Scholar 

  • Wasai S, Minamisawa K (2018) Plant-associated microbes: from rhizobia to plant microbiomes. Microbes Environ 33:1–3. https://doi.org/10.1264/jsme2.ME3301rh

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei SH, Zhou QX, Koval PV (2006) Flowering stages characteristics of Cd hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Sci Total Environ 369:441–446

    Article  CAS  PubMed  Google Scholar 

  • Weimer PJ, Zeikus JG (1978) One carbon metabolism in methanogenic bacteria. Cellular characterization and growth of Methanosarcina barkeri. Arch Microbiol 119:49–57

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellins and other hormones. Plant Physiol 144:1240–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch SA, Taunton AE, Banfield JF (2002) Effect of microorganisms andmicrobial metabolites on apatite dissolution. Geomicrobiol J 19:343–367

    Article  CAS  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Wen T, Zhao M, Yuan J, Kowalchuk GA, Shen Q (2021) Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes. Soil Ecol Lett 3:42–51

    Article  CAS  Google Scholar 

  • Weng C, Peng X, Han Y (2021) Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis. Biotechnol Biofuels 14:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Williams L, Pittman J (2010) Cell biology of metals and nutrients. Plant cell monographs; Springer, Berlin, pp 95–117

    Book  Google Scholar 

  • Wu L, Kobayashi Y, Wasaki J, Koyama H (2018) Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminium tolerance and recruiting beneficial rhizobacteria. Soil Sci Plant Nutr 64(6):697–704

    Article  CAS  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xie H, Zhao W, Li W, Zhang Y, Hajný J, Han H (2022) Small signaling peptides mediate plant adaptions to abiotic environmental stress. Planta 255:72. https://doi.org/10.1007/s00425-022-03859-6

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Lu J, Li X, Qui Q, Chen J, Yan C (2021) Effect of rice (Oryza sativa L.) genotype on yield: Evidence from recruiting spatially consistent rhizosphere microbiome. Soil Biol Biochem 161:108395

    Article  CAS  Google Scholar 

  • Xu J-G, Hu H-X, Chen J-Y, Xue Y-S, Kodirkhonov B, Han B-Z (2022) Comparative study on inhibitory effects of ferulic acid and p-coumaric acid on Salmonella Enteritidis biofilm formation. World J Microbiol Biotechnol 38:136. https://doi.org/10.1007/s11274-022-03317-1

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Dong Y, Friman V-P, Jousset A, Wei Z, Xu Y, Shen Q (2018) Carbon resource richness shapes bacterial competitive interactions by alleviating growth-antibiosis trade-off. Funct Ecol 33:868–875

    Article  Google Scholar 

  • Yang H, Knapp J, Koirala P, Rajgopal D, Peer WA, Silbart IK et al (2007a) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type 1 H+–pyrophosphatase. Plant Biotechnol J 5:735–745

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Devaiah SP, Pan X, Isaac G, Welti R, Wang X (2007b) AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. J Biol Chem 282:18116–18128

    Article  CAS  PubMed  Google Scholar 

  • Yin C, Casa Vargas JM, Schlatter DC, Hagerty CH, Hulbert SH, Paulitz TC (2021) Rhizosphere community selection reveals bacteria with reduced root disease. Microbiome 9:86. https://doi.org/10.1186/s40168-020-00997-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Corneo PE, Richter A, Wang P, Cheng W, Dijkstra FA (2019) Variation in rhizosphere priming and microbial growth and carbon use efficiency caused by wheat genotypes and temperatures. Soil Biol Biochem 134:54–61

    Article  CAS  Google Scholar 

  • Yoodee S, Kobayashi Y, Songnuan W, Boonchird C, Thitamadee S, Kobayashi I, Narangajavana J (2018) Phytohormone priming elevates the accumulation of defense-related gene transcripts and enhances bacterial blight disease resistance in cassava. Plant Physiol Biochem 122:65–77

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Fan L, Gao J, Wang M, Wu Q, Tang J, Li Y, Chan J (2015) The platelet-activating factor acetyl hydrolase gene derived from Trichoderma harzianum induces maize resistance to Curvularia lunata through the jasmonic acid signaling pathway. J Environ Sci Health B 50(10):708–717

    Article  CAS  PubMed  Google Scholar 

  • Yu LL, Liu Y, Xu F (2019) Comparative transcriptome analysis reveals significant differences in the regulation of gene expression between hydrogen cyanide- and ethylene-treated Arabidopsis thaliana. BMC Plant Biol 19:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Gui Y, Li Z, Jiang C, Guo J, Niu D (2022) Induced systemic resistance for improving plant immunity by beneficial microbes. Plants 11:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaheer A, Malik A, Sher A, Qaisrani MM, Mehmood A, Khan SU, Ashraf M, Mirza Z, Karim S, Rasool M (2019) Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J Biol Sci 26(5):1061–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeikus JG (1980) Microbial population in digester. In: Stafford DA, Weatly BI, Hughes DE (eds) Anaerobic digestion. Applied Science Publishers, London, pp 61–69

    Google Scholar 

  • Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loque´ D, Bowen BP, et al (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480

    Article  CAS  PubMed  Google Scholar 

  • Zhang AM, Zhao GY, Gao TG, Wang W, Li J, Zhang SF, Zhu BC (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afr J Microbiol Res 7:41–47

    Article  Google Scholar 

  • Zhang C, Ding Z, Wu K, Yang L, Li Y, Yang Z, Shi S, Liu X, Zhao S, Yang Z, Wang Y (2016) Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Mol Plant 9(9):1302–1314

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Cook J, Nearing JT, Zhang J, Raudonis R, Glick BR, Langille MGI, Cheng Z (2021) Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiol Res 245(126690):1–14

    Google Scholar 

  • Zheng BX, Ibrahim M, Zhang DP, Bi QF, Li HZ, Zhou GW, Ding K, Penuelas J, Zhu YG, Yang XR (2018a) Identification and characterization of inorganic phosphate solubilizing bacteria from agricultural fields with a rapid isolation method. AMB Express 8:47. https://doi.org/10.1186/s13568-018-0575-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Sun C, Hou X, Wu M, Yao Y, Li F (2018b) Pyrolysis of Arundo donax L. to produce pyrolytic vinegar and its effect on the growth of dinoflagellate Karenia brevis. Biores Technol 247:273–281

    Article  CAS  Google Scholar 

  • Zhou N, Zhao S, Tian CY (2017) Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol Lett 364:1–8

    Article  Google Scholar 

  • Zhou Y, Xiao R, Klammsteiner T, Kong X, Yan B, Mihai F-C, Liu T, Zhang Z, Awasthi MK (2022) Recent trends and advances in composting and vermicomposting technologies: a review. Biores Technol 360:127591. https://doi.org/10.1016/j.biortech.2022.127591

    Article  CAS  Google Scholar 

  • Zolla G, Badri DV, Bakker MG, Manter DK, Vivanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9

    Article  Google Scholar 

  • Zörb C, Geilfus CM, Dietz KJ (2019) Salinity and crop yield. Plant Biol 21:31–38

    Article  PubMed  Google Scholar 

  • Zverev AO, Pershina EV, Shapkin VM, Kichko AK, Mitrofanova OP, Kobylyanskii VD, Yuzikhin OS, Belimov AA, Andronov EE (2020) Molecular analysis of the thizosphere the microbial communities from gramineous plants grown on contrasting soils. Microbiology 89:231–241

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the faculty members of Microbiology department for their critical reading of the manuscript and for providing valuable comments and inputs to improve the manuscript

Funding

Being a review article, no funding was involved in compilation of the information in this review chapter.

Author information

Authors and Affiliations

Authors

Contributions

SSS and BRG conceived and designed the review. AS and SSS contributed in writing and original draft preparation. AS designed the figures. BRG performed the editing. All the authors have read and approved the published version of the manuscript.

Corresponding author

Correspondence to Satyavir S. Sindhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

The work submitted does not include any experiment related to animals.

Additional information

Communicated by Muthusamy Govarthanan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindhu, S.S., Sehrawat, A. & Glick, B.R. The involvement of organic acids in soil fertility, plant health and environment sustainability. Arch Microbiol 204, 720 (2022). https://doi.org/10.1007/s00203-022-03321-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-03321-x

Keywords

Navigation