Skip to main content

Advertisement

Log in

Functional characterization of maltodextrin glucosidase for maltodextrin and glycogen metabolism in Vibrio vulnificus MO6-24/O

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Glycogen is important for transmission of V. vulnificus undergoing disparate environments of nutrient-rich host and nutrient-limited marine environment. The malZ gene of V. vulnificus encoding a maltodextrin glucosidase was cloned and over-expressed in E. coli to investigate its roles in glycogen/maltodextrin metabolism in the pathogen. The malZ gene encoded a protein with a predicted molecular mass of 70 kDa. The optimal pH and temperature of MalZ was 7.0 and 37 °C, respectively. MalZ hydrolyzed maltodextrin to glucose and maltose most efficiently, while hydrolyzed other substrates such as starch, maltose, β-cyclomaltodextrin, and glycogen less efficiently. The activity was enhanced greatly by Mn2+. It also exhibited transglycosylation activity toward excessive maltotriose. The malZ knock-out mutant accumulated 2.3–5.6-fold less glycogen than the wild type when excessive maltodextrin or glucose was added to LB medium, while it accumulated more glycogen than the wild type (3.5-fold) in the presence of excessive maltose. Growth and glycogen accumulation of the mutant were retarded most significantly in the M63 minimal medium supplemented with 0.5% maltodextrin. Side chain length distributions of glycogen molecules were varied by the malZ mutation and types of the excessive carbon source. Based on the results, MalZ of V. vulnificus was likely to be involved in maltose/maltodextrin metabolism, thereby balancing synthesis of glycogen and energy generation in the cell. The bacterium seemed to have multiple and unique pathways for glycogen metabolism according to carbon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Ahn W, An Y, Song K, Park K, Lee S, Oh B, Park J, Woo E (2022) Dimeric architecture of maltodextrin glucosidase (MalZ) provides insights into the substrate recognition and hydrolysis mechanism. Biochem Biophys Res Commun 586:49–54

    Article  CAS  PubMed  Google Scholar 

  • Alexeyev MF (1995) Three kanamycin resistance gene cassette with different polylinkers. Biotechnique 18:52–56

    CAS  Google Scholar 

  • Almagro G, Viale AM, Montero M, Rahimpour M, Munoz FJ, Baroja-Fernandez E, Bahaji A, Zuniga M, Gonzalez-Candelas F, Pozueta-Romero J (2015) Comparative genomic and phylogenetic analyses of gamma proteobacteiral glg genes traced the origin of the Escherichia coli glycogen glgBXCAP operon to the last common ancestor of the sister orders Enterobacteriales and Pasteurellales. PLoS ONE 10:e0115516

    Article  PubMed  PubMed Central  Google Scholar 

  • Aron MB, Zheng CJ, Farideh C, Myra K, Lewis YG, Reneta CG, Noreen R, David HI, Zhang DC, Stephen HB (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:348–352

    Google Scholar 

  • Ballicora MA, Iglesias AA, Preiss J (2003) ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol 67:213–225

    Article  CAS  Google Scholar 

  • Bonafonte MA, Solano B, Sesma C, Alvarez M, Montuenga L, Garcia-Ros D, Gamazo C (2000) The relationship between glycogen synthesis, biofilm formation and virulence in Salmonella enteritidis. FEMS Microbiol Lett 191:31–36

    Article  CAS  PubMed  Google Scholar 

  • Boor KJ (2006) Bacterial stress responses: what doesn’t kill them can make them stronger. Plos Biol 4:18–20

    Article  CAS  Google Scholar 

  • Boos W, Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 62:204–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourassa L, Camilli A (2009) Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae. Mol Microbiol 72:124–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chang B, Morita M, Lee K, Ohnishi M (2018) Whole-genome sequence analysis of Streptococcus pneumoniae strains that cause hospital-acquired pneumonia infections. J Clin Microbiol 56:e01822-e1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauvilleé D, Kinderf IS, Li Z, Hashemi K, Samuel BMS, Rampling L, Ball S, Morell MK (2005) Role of the Escherichia coli glgX gene in glycogen metabolism. J Bacteriol 187:1465–1473

    Article  PubMed  PubMed Central  Google Scholar 

  • Dippel R, Bergmiller T, Boos W (2005) The maltodextrin system of Escherichia coli: glycogen-derived endogenous induction and osmoregulation. J Bacteriol 187:8332–8339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnenberg MS, Kaper JB (1991) Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59:4310–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer JJ (1980) Revival of the Name Vibrio vulnificus. J Syst Bacteriol 30:656

    Article  Google Scholar 

  • Gulig PA, Bourdage KL, Starks AM (2005) Molecular Pathogenesis of Vibrio vulnificus. J Microbiol 43:118–131

    CAS  PubMed  Google Scholar 

  • Han A, Lee Y, Wang T, Kim J (2018) Glycogen metabolism in Vibrio vulnificus affected by malP and malQ. Microbiol Biotechnol Lett 46:29–39

    Article  Google Scholar 

  • Han A, Kim H, Park J, Kim J (2022) Characterization of a cold-adapted debranching enzyme and its role in glycogen metabolism and virulence of Vibrio vulnificus MO6-24/O. J Microbiol 60:375–386

    Article  CAS  PubMed  Google Scholar 

  • Jo H, Park S, Jeong H, Kim J, Park J (2015) Vibrio vulnificus glycogen branching enzyme preferentially transfers very short chains: N1 domain determines the chain length transferred. FEBS Lett 589:1089–1094

    Article  CAS  PubMed  Google Scholar 

  • Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77:1723–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones SA, Jorgensen M, Chowdhury FZ, Rodgers R, Hartline J, Leatham MPC, Struve C, Krogfelt KA, Cohen PS, Conway T (2008) Glycogen and maltose utilization by Escherichia coli O157:H7 in the mouse intestine. Infect Immun 76:2531–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiel JA, Boels JM, Beldman G, Venema G (1994) Glycogen in Bacillus subtilis: molecular characterization of an operon encoding enzymes involved in glycogen biosynthesis and degradation. Mol Microbiol 11:203–218

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Kim MS, Cho HS, Kim JI, Kim TJ, Choi JH, Park C, Le HS, Oh BH, Park KH (2002a) Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J Biol Chem 277:21891–21897

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Lee YH, Kim YW, Kim TJ, Park CS, Kim JW, Moon TW, Park KH (2002b) A novel amylolytic enzyme from Thermotoga maritima, resembling cyclodextrinase and α-glucosidase, that liberates glucose from the reducing end of the substrates. Biochem Biophys Res Commun 295:818–825

    Article  CAS  PubMed  Google Scholar 

  • Li K, Chan K (1983) Production and Properties of α-glucosidase from Lactobacillus acidophilus. Appl Environ Microbiol 46:1380–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim MS, Lee MH, Lee JH, Ju H, Park MY, Jeong HS, Rhee JE, Choi SH (2005) Identification and Characterization of the Vibrio vulnificus malPQ Operon. J Microbiol Biotechnol 15:616–625

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalycylic acid reagent for determination reducing sugar. Anal Biochem 31:426–428

    CAS  Google Scholar 

  • Northcote DH (1953) The molecular structure and shape of yeast glycogen. Biochem J 53:348–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer TN, Wober G, Whelan WJ (1973) The pathway of exogenous and endogenous carbohydrate utilization in Escherichia coli: a dual function for the enzymes of the maltose operon. Eur J Biochem 39:601–612

    Article  CAS  PubMed  Google Scholar 

  • Park K (2015) Roles of enzymes in glycogen metabolism and degradation in Escherichia coli. J Appl Glycosci 62:37–45

    Article  CAS  Google Scholar 

  • Park JH, Cho YJ, Chun J, Seok YJ, Lee JK, Kim KS, Park SJ, Choi SH (2011a) Complete genome sequence of Vibrio vulnificus MO6-24/O. J Bacteriol 193:2062–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JT, Shim JH, Tran PL, Hong IH, Yong HU, Oktavina EF, Nguyen HD, Kim JW, Lee TS, Park SH, Boos W, Park KH (2011b) Role of maltose enzymes in glycogen synthesis by Escherichia coli. J Bacteriol 193:2517–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raasch C, Streit W, Schanzer J, Bibel M, Gosslar U, Liebl W (2000) Thermotoga maritime AglA, an extremely NAD+-, Mn2+-, and thiol-dependent α-glucosidase. Extremophiles 4:189–200

    Article  CAS  PubMed  Google Scholar 

  • Raibaud O, Richet E (1987) Maltotriose is the inducer of the maltose regulon of Escherichia coli. J Bacteriol 169:3059–3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim JH, Park JT, Hong JS, Kim KW, Kim MJ, Auh JH, Kim YW, Park CS, Boos W, Kim JW, Park KH (2009) Role of maltogenic amylase and pullulanase in maltodextrin and glycogen metabolism of Bacillus subtilis 168. J Bacteriol 191:4835–4844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song KM, Shim JH, Park JT, Kim SH, Kim YW, Boos W, Park KH (2010) Transglycosylation properties of maltodextrin glucosidase (MalZ) from Escherichia coli and its application for synthesis of a nigerose-containing oligosaccharide. Biochem Biophys Res Commun 397:87–92

    Article  CAS  PubMed  Google Scholar 

  • Sorndech W, Nakorn KM, Tongta S, Blennow A (2018) Isomalto-oligosaccharides: recent insights in production technology and their use for food and medical applications. Lebensm Wiss Technol 95:135–142

    Article  CAS  Google Scholar 

  • Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19:552–562

    Article  Google Scholar 

  • Svensson B (1994) Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol Biol 25:141–427

    Article  CAS  PubMed  Google Scholar 

  • Tapio S, Yehll SF, Shuman HA, Boos W (1991) The malZ Gene of Escherichia coli, a member of the maltose regulon, encodes a maltodextrin glucosidase. J Biol Chem 266:19450–19458

    Article  CAS  PubMed  Google Scholar 

  • Tran PL, An Y, Jeong G, Ban S, Nguyen PC, Woo E, You S, Park J (2022) One-step synthesis of glycogen-type polysaccharides from maltooctaose and its structural characteristics. Carbohydr Polym 284:119175

    Article  CAS  PubMed  Google Scholar 

  • Valdes N, Espinoza C, Sanhueza L, Gonzalez A, Corsini G, Tello M (2015) Draft genome sequence of the chilean isolate Aeromonas salmonicida strain CBA100. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnu062

    Article  PubMed  Google Scholar 

  • Vidal-Ingigliardi D, Ricbet E, Raibaud O (1991) Two MalT binding sites in direct repeat: a structural motif involved in the activation of all the promoters of the maltose regulons in Escherichia coli and Klebsiella pneumoniae. J Mol Biol 218:323–334

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wise MJ (2011) Glycogen with short average chain length enhances bacterial durability. Naturewissenschaften 98:719–729

    Article  CAS  Google Scholar 

  • Wilkinson JF (1963) Carbon and energy storage in bacteria. J Gen Microbiol 32:171–176

    Article  CAS  PubMed  Google Scholar 

  • Wilson WA, Roach PJ, Montero M, Baroja-Fernandez E, Munoz FJ, Eydallin G, Viale AM, Pozueta-Romero J (2010) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34:952–958

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by INU via the university grant in the year of 2019.

Author information

Authors and Affiliations

Authors

Contributions

HK performed investigation, DM contributed to data analysis and preparation of tables and figures, JK contributed to funding acquisition, supervision of investigation, and preparation of the manuscript.

Corresponding author

Correspondence to Jung-Wan Kim.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical approval

Not applicable.

Consent to participate

All authors consented to participate investigation and publication.

Consent to publish

All authors consented to publish the results.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HY., Davoodbasha, M. & Kim, JW. Functional characterization of maltodextrin glucosidase for maltodextrin and glycogen metabolism in Vibrio vulnificus MO6-24/O. Arch Microbiol 204, 668 (2022). https://doi.org/10.1007/s00203-022-03274-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-03274-1

Keywords

Navigation