Skip to main content
Log in

Comparative analysis of the structure and function of rhizosphere microbiome of the Chinese medicinal herb Alisma in different regions

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Rhizoma Alismatis, a commonly used traditional Chinese medicine, is the dried tuber of Alisma orientale and Alisma A. plantago-aquatica, mainly cultivated in Fujian and Sichuan provinces (China), respectively. Studies have shown that the rhizosphere microbiome is a key factor determining quality of Chinese medicinal plants. Here we applied metagenomics to investigate the rhizosphere microbiome of Alisma in Fujian and Sichuan, focusing on its structure and function and those genes involved in protostane triterpenes biosynthesis. The dominant phyla were Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, and Gemmatimonadetes. Compared with Fujian, the rhizosphere of Sichuan has a greater α diversity and stronger microbial interactions but significantly lower relative abundance of archaea. Microbes with disease-suppressing functions were more abundant in Sichuan than Fujian, but vice versa for those with IAA-producing functions. Gemmatimonas, Anaeromyxobacter, and Pseudolabrys were the main contributors to the potential functional difference in two regions. Genes related to protostane triterpenes biosynthesis were enriched in Fujian. Steroidobacter, Pseudolabrys, Nevskia, and Nitrospira may contribute to the accumulation of protostane triterpenes in Alisma. This work fills a knowledge gap of Alisma’s rhizosphere microbiome, providing a valuable reference for studying its beneficial microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the sequences’ raw data were uploaded to NCBI’s Sequence Read Archive (SRA) database, under the following accession numbers: SRR17256002, SRR17256001, SRR17256000, SRR17255999, SRR17255998, SRR17255996, SRR17255995, SRR17255994, and SRR17255993.

References

  • Ali A, Ghani MI, Li Y et al (2019) Hiseq base molecular characterization of soil microbial community, diversity structure, and predictive functional profiling in continuous cucumber planted soil affected by diverse cropping systems in an intensive Greenhouse Region of Northern China. Int J Mol Sci 20(11):2619

    Article  CAS  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microb Biot 28(4):1327–1350

    Article  CAS  Google Scholar 

  • Cantabella D, Teixidó N, Segarra G et al (2021) Rhizosphere microorganisms enhance in vitro root and plantlet development of Pyrus and Prunus rootstocks. Planta 253:78

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Mao X, Huang J et al (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:316–322

    Article  CAS  Google Scholar 

  • Chen YT, Wang Y, Yeh K et al (2017) Role of root exudates in metal acquisition and tolerance. Curr Opin Plant Biol 39:66–72

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wu H, Yan B et al (2018a) Core microbiome of medicinal plant Salvia miltiorrhiza Seed: a rich reservoir of beneficial microbes for secondary metabolism? Int J Mol Sci 19(3):672

    Article  PubMed Central  CAS  Google Scholar 

  • Chen S, Zhou Y, Chen Y et al (2018b) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen LJ, Wu XQ, Xu Y et al (2020) Microbial diversity and community structure changes in the rhizosphere soils of Atractylodes lancea from different planting years. Plant Signaling Behav 16(2):1854507

    Article  CAS  Google Scholar 

  • Chinese Pharmacopoeia Commission (2020) Pharmacopoeia of the People’s Republic of China. China Medical Science Press, Beijing

    Google Scholar 

  • Cordero PV, Fischer SE, Cavigliasso AM et al (2007) isolation and characterization of plant growth-promoting pseudomonas from the rhizosphere of maize. Biocell 31:55

    Google Scholar 

  • Dinkelaker B, Rmheld V, Marschner H et al (2010) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12(3):285–292

    Article  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. P Natl Acad Sci 112(8):E911–E920

    Article  CAS  Google Scholar 

  • Faria M, Mrd CL, Chiaramonte JB et al (2020) The rhizosphere microbiome: functions, dynamics, and role in plant protection. Trop Plant Pathol 46:13–25

    Article  Google Scholar 

  • Fu L, Penton CR, Ruan Y et al (2017) Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol Biochem 104:39–48

    Article  CAS  Google Scholar 

  • Giudice LD, Massardo DR, Pontieri P et al (2010) The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environ Microbiol 10(10):2824–2841

    Article  CAS  Google Scholar 

  • Hideki N, Jungho P, Toshihisa T et al (2006) MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 34:5623–5630

    Article  CAS  Google Scholar 

  • Huang WJ, Long CL, Lam E (2018) Roles of plant-associated microbiota in traditional herbal medicine. Trends Plant Sci 23(7):559–562

    Article  CAS  PubMed  Google Scholar 

  • Hugoni M, Galland W, Lecomte S et al (2021) Effects of the denitrification inhibitor “Procyanidins” on the diversity, interactions, and potential functions of Rhizosphere-Associated Microbiome. Microorganisms 9(7):1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasim B, Geethu PR, Mathew J et al (2015) Effect of endophytic Bacillus sp. from selected medicinal plants on growth promotion and diosgenin production in Trigonella foenum-graecum. Plant Cell Tiss ORG 122:1–8

    Article  CAS  Google Scholar 

  • Jiang CH, Xie P, Li K et al (2017) Evaluation of root-knot nematode disease control and plant growth promotion potential of biofertilizer Ning shield on Trichosanthes kirilowii in the field. Environ Microbiol 49(2):232–239

    Google Scholar 

  • Jiang J, Yu M, Hou R et al (2019) Changes in the soil microbial community are associated with the occurrence of Panax quinquefolius L. root rot diseases. Plant Soil 438:143–156

    Article  CAS  Google Scholar 

  • Jin X, Zhang Y, Zhang P et al (2018) The structure and function of the global citrus rhizosphere microbiome. Nat Commun 9(1):4894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jja B, Jsk A, Jt C et al (2020) Archaea, tiny helpers of land plants - ScienceDirect. Comput Struct Biotechnol 18:2494–2500

    Article  CAS  Google Scholar 

  • Kawasaki A, Dennis PG, Forstner C et al (2021) The microbiomes on the roots of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) exhibit significant differences in structure between root types and along root axes. Funct Plant Biol 48(9):871–888

    Article  CAS  PubMed  Google Scholar 

  • Kui L, Chen B, Chen J et al (2021) A comparative analysis on the structure and function of the Panax notoginseng Rhizosphere microbiome. Front Microbiol 12:673512

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Yu C, Li Y et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Li D, Liu CM, Luo R et al (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31(10):1674–1676

    CAS  PubMed  Google Scholar 

  • Li C, Chen G, Zhang J et al (2021a) The comprehensive changes in soil properties are continuous cropping obstacles associated with American ginseng (Panax quinquefolius) cultivation. Sci Rep 11(1):5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Liu L, Zheng L et al (2021b) Stoichiometric plasticity of root exudates under altered nitrogen and rainfall patterns in a temperate steppe. Soil Biol Biochem 161:108384

    Article  CAS  Google Scholar 

  • Liu SS, Liu XQ, Tian SS et al (2020) Qualitative and quantitative research on nucleosides of Alismatis Rhizoma from different regions. China J Chin Mater Med 45:1558–1565

    Google Scholar 

  • Liu J, He X, Sun J et al (2021) A degeneration gradient of Poplar trees contributes to the taxonomic, functional, and resistome diversity of bacterial communities in Rhizosphere soils. Int J Mol Sci 22(7):3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo LF, Yang L, Yan ZX et al (2020) Ginsenosides in root exudates of Panax notoginseng drive the change of soil microbiota through carbon source different utilization. Plant Soil 455:139–153

    Article  CAS  Google Scholar 

  • Mañero FJ, Algar E, Martín Gómez MS et al (2012) Elicitation of secondary metabolism in Hypericum perforatum by rhizosphere bacteria and derived elicitors in seedlings and shoot cultures. Pharm Biol 50(10):1201–1209

    Article  PubMed  CAS  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55(394):27–34

    Article  CAS  PubMed  Google Scholar 

  • Masters-clark E, Shone E, Paradelo M et al (2020) Development of a defined compost system for the study of plant-microbe interactions. Sci Rep 10(1):7521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehalaine S, Chenchouni H (2020) Plants of the same place do not have the same metabolic pace: soil properties affect differently essential oil yields of plants growing wild in semiarid Mediterranean lands. Arabian J Geosci 13(23):1263

    Article  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Ming Q, Han T, Li W et al (2012) Tanshinone IIA and tanshinone I production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza. Phytomedicine 19(3–4):330–333

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA et al (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    Article  PubMed  Google Scholar 

  • Nan J, Chao L, Ma X et al (2020) Microbial diversity in the rhizosphere soils of three Stipa species from the eastern Inner Mongolian grasslands. Glob Ecol Conserv 22:e00992

    Article  Google Scholar 

  • Omotayo OP, Igiehon ON, Babalola OO (2021) Metagenomic study of the community structure and functional potentials in Maize Rhizosphere Microbiome: elucidation of mechanisms behind the improvement in plants under normal and stress conditions. Sustainability 13(14):8079

    Article  CAS  Google Scholar 

  • Rawat P, Das S, Shankhdhar D et al (2020) Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr 21:49–68

    Article  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 1:21

    Google Scholar 

  • Schmidt JE, Vannette RL, Igwe A et al (2019) Effects of agricultural management on Rhizosphere Microbial Structure and function in processing tomato plants. Appl Environ Microb 85(16):e01064

    Article  CAS  Google Scholar 

  • Sraphet S, Javadi B (2022) Unraveling techniques for plant microbiome structure analysis. Diversity 14(3):206

    Article  CAS  Google Scholar 

  • Sun R, Wang F, Hu C et al (2021) Metagenomics reveals taxon-specific responses of the nitrogen-cycling microbial community to long-term nitrogen fertilization. Soil Biol Biochem 156:108214

    Article  CAS  Google Scholar 

  • Taffner J, Erlacher A, Bragina A et al (2018) What Is the role of Archaea in plants? New insights from the vegetation of Alpine bogs. Msphere 3(3):e00122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian T, Chen H, Zhao YY (2014) Traditional uses, phytochemistry, pharmacology, toxicology and quality control of Alisma orientale (Sam.) Juzep: a review. J Ethnopharmacol 158:373–387

    Article  CAS  PubMed  Google Scholar 

  • Trivedi C, Reich PB, Maestre FT et al (2019) Plant-driven niche differentiation of ammonia-oxidizing bacteria and archaea in global drylands. ISME J 13(7):1

    Google Scholar 

  • Wang J, Wang D, Ren Y et al (2019a) Coupling relationships between soil microbes and soil nutrients under different hydrologic conditions in the riparian zone of the Lijiang River. Acta Ecol Sin 39:2687–2695

    Google Scholar 

  • Wang S, Wang J, Liang W et al (2019b) Promotion of ginsenosides production in a co-cultivation system of Panax ginseng adventitious roots and immobilized Aspergillus niger. Ind Crops Prod 140(2):111564

    Article  CAS  Google Scholar 

  • Wang P, Song T, Shi R et al (2020) Triterpenoids from Alisma Species: phytochemistry, structure modification, and bioactivities. Front Chem 8:363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang DL, Bai YH, Qu JH (2021) The Phragmites root-inhabiting microbiome: a critical review on its composition and environmental application. Engineering 9:42–45

    Article  CAS  Google Scholar 

  • Weinhold A, Dll S, Liu M et al (2020) Plot diversity differentially affects the chemical composition of leaves, roots and root exudates in four subtropical tree species. J Ecol 110(1):97–116

    Article  Google Scholar 

  • Yun K, Yeoh, et al (2016) The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ Microbiol 18(5):1338–1351

    Article  Google Scholar 

  • Zamani-zadeh M, Soleimanian-zad S, Sheikh-zeinoddin M (2013) Biocontrol of gray mold disease on Strawberry fruit by integration of Lactobacillus plantarum A7 with ajwain and cinnamon essential oils. J Food Sci 78(10):M1582–M1588

    Article  CAS  PubMed  Google Scholar 

  • Zarea MJ (2019) Applications of beneficial microbe in arid and semiarid agroecosystem IAA-producing bacteria. In: Kumar V, Prasad R, Kumar M, Choudhary DK (eds) Microbiome in plant health and disease. Springer, New York, pp 105–118

    Chapter  Google Scholar 

  • Zhai T, Wang Y, Liu C et al (2019) Trichoderma asperellum ACCC30536 inoculation improves soil nutrition and leaf artemisinin production in Artemisia annua. Acta Physiol Plant 41(4):46

    Article  CAS  Google Scholar 

  • Zhalnina K, Dias R, Quadros PDD et al (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol 69(2):395–406

    Article  CAS  PubMed  Google Scholar 

  • Zhalnina K, Louie KB, Hao Z et al (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Zu M, Liu L et al (2021) Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium. BMC Plant Biol 21(1):127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant No.82073958 and 81673534), Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization (Grant No. ZDXM-3-24), Qing Lan Project (Grant No. 2019), and Suzhou Science and Technology Development Plan (Grant No. SYSD2020248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1652 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Gu, W., Tian, R. et al. Comparative analysis of the structure and function of rhizosphere microbiome of the Chinese medicinal herb Alisma in different regions. Arch Microbiol 204, 448 (2022). https://doi.org/10.1007/s00203-022-03084-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-03084-5

Keywords

Navigation