Skip to main content
Log in

Nonomuraea terrae sp. nov., isolated from arid soil

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

During the course of isolating rare actinobacteria from unexplored habitats, strain CH32T was obtained from an arid soil sample in eastern Anatolia, Turkey. Polyphasic characterization and comprehensive genome analyses showed that the strain is a member of the genus Nonomuraea and it is closely related to Nonomuraea gerenzanensis ATCC 39727T, Nonomuraea polychroma DSM 43925T and Nonomuraea maritima FXJ7.203T with gene identity level of 98.7%, 98.2% and 98.1%, respectively. The whole-cell hydrolysates contain meso-diaminopimelic acid as diagnostic diaminoacid and glucose, ribose, galactose, mannose and madurose as whole cell sugars. The predominant menaquinones are MK-9(H4), MK-9(H6) and MK-9(H2) while MK-9 exists as minor component. The polar lipid profile consists of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, glycolipid, glycophospholipids, phospholipids and unidentified lipids. The major cellular fatty acids are iso-C16:0 and C17:0 10-methyl. The total genome size is about 9.6 Mb and the G + C content is 71.0%. The genome contains biosynthetic gene clusters encoding for terpenes, siderophores, a type III polyketide synthase, a non-ribosomal polypeptide synthetase and a bacteriocin. The genome-based comparisons of the strain with its phylogenetic neighbours, as indicated by digital DNA–DNA hybridization and average nucleotide identity analyses, reveal that strain CH32T (= JCM 33876T = KCTC 49368T) is a novel member of the genus Nonomuraea, for which Nonomuraea terrae sp. nov. is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alanjary M et al (2017) The antibiotic resistant target seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res 45:W42–W48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amin DH, Abolmaaty A, Borsetto C, Tolba S, Abdallah NA, Wellington EM (2019) In silico genomic mining reveals unexplored bioactive potential of rare actinobacteria isolated from Egyptian soil. Bull Natl Res Cent 43:78

    Google Scholar 

  • Aryal N, Aziz S, Rajbhandari P, Gross H (2019) Draft genome sequence of Nonomuraea sp. strain C10, a producer of brartemicin, isolated from a mud dauber wasp nest in Nepal. Microbiol Resour Announc 8:45

    Google Scholar 

  • Ay H, Saygin H, Sahin N (2020) Phylogenomic revision of the family Streptosporangiaceae, reclassification of Desertactinospora gelatinilytica as Spongiactinospora gelatinilytica comb. nov. and a taxonomic home for the genus Sinosporangium in the family Streptosporangiaceae. Int J Syst Evol Microbiol 70:2562–2572

    Google Scholar 

  • Aziz RK et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75

    Google Scholar 

  • Barka EA et al (2016) Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80:1–43

    PubMed  Google Scholar 

  • Blin K et al (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Google Scholar 

  • Collins MD (1985) 11 Analysis of isoprenoid quinones. Methods in microbiology, vol 18. Elsevier, Amsterdam, pp 329–36618

    Google Scholar 

  • D’Argenio V et al (2016) The complete 12 Mb genome and transcriptome of Nonomuraea gerenzanensis with new insights into its duplicated “magic” RNA polymerase. Sci Rep 6:1–13

    Google Scholar 

  • Dalmastri C, Gastaldo L, Marcone GL, Binda E, Congiu T, Marinelli F (2016) Classification of Nonomuraea sp. ATCC 39727, an actinomycete that produces the glycopeptide antibiotic A40926, as Nonomuraea gerenzanensis sp. nov. Int J Syst Evol Microbiol 66:912–921

    CAS  PubMed  Google Scholar 

  • Davis JJ et al (2016) PATtyFams: protein families for the microbial genomes in the PATRIC database. Front Microbiol 7:118

    PubMed  PubMed Central  Google Scholar 

  • Derewacz DK et al (2014) Structure and stereochemical determination of hypogeamicins from a cave-derived actinomycete. J Nat Prod 77:1759–1763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668

    Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    CAS  PubMed  Google Scholar 

  • Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Google Scholar 

  • Komaki H, Ichikawa N, Tamura T, Oguchi A, Hamada M, Fujita N (2016) Genome-based survey of nonribosomal peptide synthetase and polyketide synthase gene clusters in type strains of the genus Microtetraspora. J Antibiot 69:712–718

    CAS  Google Scholar 

  • Komaki H, Sakurai K, Hosoyama A, Kimura A, Igarashi Y, Tamura T (2018) Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains. Sci Rep 8:1–11

    CAS  Google Scholar 

  • Kreft Ł, Botzki A, Coppens F, Vandepoele K, Van Bel M (2017) PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 33:2946–2947

    CAS  PubMed  Google Scholar 

  • Kroppenstedt RM, Goodfellow M (2006) The family Thermomonosporaceae: Actinocorallia, actinomadura, spirillospora and thermomonospora. The prokaryotes. Springer, New York, pp 682–724

    Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    PubMed  PubMed Central  Google Scholar 

  • Küster E, Williams S (1964) Selection of media for isolation of streptomycetes. Nature 202:928–929

    Google Scholar 

  • Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Evol Microbiol 20:435–443

    CAS  Google Scholar 

  • Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipun K, Teo WFA, Tongpan J, Matsumoto A, Duangmal K (2019) Nonomuraea suaedae sp. nov., isolated from rhizosphere soil of Suaeda maritima (L.) Dumort. J Antibiot 72:518–523

    CAS  Google Scholar 

  • Malik A, Kim YR, Jang IH, Hwang S, Oh D-C, Kim SB (2020) Genome-based analysis for the bioactive potential of Streptomyces yeochonensis CN732, an acidophilic filamentous soil actinobacterium. BMC Genom 21:118

    CAS  Google Scholar 

  • Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182

    PubMed  PubMed Central  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013a) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Google Scholar 

  • Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P (2013b) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418

    CAS  PubMed  Google Scholar 

  • Meier-Kolthoff JP et al (2014) Complete genome sequence of DSM 30083 T, the type strain (U5/41 T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genom Sci 9:2

    Google Scholar 

  • Minnikin D, O'donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    CAS  Google Scholar 

  • Nazari B, Forneris CC, Gibson MI, Moon K, Schramma KR, Seyedsayamdost MR (2017) Nonomuraea sp. ATCC 55076 harbours the largest actinomycete chromosome to date and the kistamicin biosynthetic gene cluster. MedChemComm 8:780–788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niemhom N, Chutrakul C, Suriyachadkun C, Thawai C (2017) Nonomuraea stahlianthi sp. nov., an endophytic actinomycete isolated from the stem of Stahlianthus campanulatus. Int J Syst Evol Microbiol 67:2879–2884

    CAS  PubMed  Google Scholar 

  • Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:132

    PubMed  PubMed Central  Google Scholar 

  • Primahana G, Risdian C, Mozef T, Sudarman E, Köck M, Wink J, Stadler M (2020) Nonocarbolines A–E, β-carboline antibiotics produced by the rare actinobacterium Nonomuraea sp. from Indonesia. Antibiotics 9:126

    CAS  PubMed Central  Google Scholar 

  • Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2015) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931

    PubMed  PubMed Central  Google Scholar 

  • Sasser M (1990) Identification of bacteria through fatty acid analysis. In: Klement Z, Rudolph K, Sands D (eds) Methods in phytobacteriology. Akademiai Kiado, Budapest, pp 199–204

    Google Scholar 

  • Saygin H, Nouioui I, Ay H, Guven K, Cetin D, Klenk HP, Goodfellow M, Sahin N (2020) Polyphasic classification of Nonomuraea strains isolated from the Karakum Desert and description of Nonomuraea deserti sp. nov., Nonomuraea diastatica sp. nov., Nonomuraea longispora sp. nov. and Nonomuraea mesophila sp. nov. Int J Syst Evol Microbiol 70:636–647

    PubMed  Google Scholar 

  • Shaaban KA et al (2019) Karamomycins A–C: 2-Naphthalen-2-yl-thiazoles from Nonomuraea endophytica. J Nat Prod 82:870–877

    CAS  PubMed  Google Scholar 

  • Shirling ET, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Google Scholar 

  • Sosio M, Stinchi S, Beltrametti F, Lazzarini A, Donadio S (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem Biol 10:541–549

    CAS  PubMed  Google Scholar 

  • Sripreechasak P, Phongsopitanun W, Supong K, Pittayakhajonwut P, Kudo T, Ohkuma M, Tanasupawat S (2017) Nonomuraea rhodomycinica sp. nov., isolated from peat swamp forest soil. Int J Syst Evol Microbiol 67:1683–1687

    CAS  PubMed  Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sungthong R, Nakaew N (2015) The genus Nonomuraea: a review of a rare actinomycete taxon for novel metabolites. J Basic Microbiol 55:554–565

    PubMed  Google Scholar 

  • Supong K, Sripreechasak P, Phongsopitanun W, Tanasupawat S, Danwisetkanjana K, Bunbamrung N, Pittayakhajonwut P (2019) Antimicrobial substances from the rare actinomycete Nonomuraea rhodomycinica NR4-ASC07T. Nat Prod Res 33:2285–2291

    CAS  PubMed  Google Scholar 

  • Terui Y, Chu Y-w, Li J-y, Ando T, Fukunaga T, Aoki T, Toda Y (2008) New cyclic tetrapeptides from Nonomuraea sp. TA-0426 that inhibit glycine transporter type 1 (GlyT1). Bioorg Med Chem Lett 18:6321–6323

    CAS  PubMed  Google Scholar 

  • Tocchetti A et al (2015) A genomic, transcriptomic and proteomic look at the GE2270 producer Planobispora rosea, an uncommon actinomycete. PLoS One 10:e0133705. https://doi.org/10.1371/journal.pone.0133705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F et al (2011) Nonomuraea wenchangensis sp. nov., isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol 61:1304–1308

    PubMed  Google Scholar 

  • Wattam AR et al (2016) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45:D535–D542

    PubMed  PubMed Central  Google Scholar 

  • Weyland H (1969) Actinomycetes in North Sea and Atlantic ocean sediments. Nature 223:858–858

    CAS  PubMed  Google Scholar 

  • Williams S, Goodfellow M, Alderson G, Wellington E, Sneath P, Sackin M (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  • Xi L, Zhang L, Ruan J, Huang Y (2011) Nonomuraea maritima sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 61:2740–2744

    CAS  PubMed  Google Scholar 

  • Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yushchuk O, Andreo-Vidal A, Marcone GL, Bibb M, Marinelli F, Binda E (2020) New molecular tools for regulation and improvement of A40926 glycopeptide antibiotic production in Nonomuraea gerenzanensis ATCC 39727. Front Microbiol 11:8

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Genome sequencing was provided by MicrobesNG (https://www.microbesng.uk) which is supported by the BBSRC (Grant number BB/L024209/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilal Ay.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants and/or animals performed by the author. The formal consent is not required in this study.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ay, H. Nonomuraea terrae sp. nov., isolated from arid soil. Arch Microbiol 202, 2197–2205 (2020). https://doi.org/10.1007/s00203-020-01941-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01941-9

Keywords

Navigation