Skip to main content

Advertisement

Log in

Exopolysaccharide production in Ensifer meliloti laboratory and native strains and their effects on alfalfa inoculation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacterial surface molecules have an important role in the rhizobia-legume symbiosis. Ensifer meliloti (previously, Sinorhizobium meliloti), a symbiotic Gram-negative rhizobacterium, produces two different exopolysaccharides (EPSs), termed EPS I (succinoglycan) and EPS II (galactoglucan), with different functions in the symbiotic process. Accordingly, we undertook a study comparing the potential differences in alfalfa nodulation by E. meliloti strains with differences in their EPSs production. Strains recommended for inoculation as well as laboratory strains and native strains isolated from alfalfa fields were investigated. This study concentrated on EPS-II production, which results in mucoid colonies that are dependent on the presence of an intact expR gene. The results revealed that although the studied strains exhibited different phenotypes, the differences did not affect alfalfa nodulation itself. However, subtle changes in timing and efficacy to the effects of inoculation with the different strains may result because of other as-yet unknown factors. Thus, additional research is needed to determine the most effective inoculant strains and the best conditions for improving alfalfa production under agricultural conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelhadi LO, Lyons TP, Jacques KA (2004) Evaluating inoculants for forage crops in Argentine beef and milk grazing systems: effects on silage quality and system profitability. In: Lyons TP, Jacques KA (Eds.) Nutritional biotechnology in the feed and food industries. Alltech 20th Annual Symposium. Nicholasville, KY, USA pp. 171–177.

  • Agnusdei MG, Assuero SG, Lattanzi FA, Marino MA (2010) Critical N concentration can vary with growth conditions in forage grasses: implications for plant N status assessment and N deficiency diagnosis. Nutr Cycl Agroecosys 88:215–230

    CAS  Google Scholar 

  • Arelovich HM, Bravo RD, Martínez MF (2011) Development, characteristics, and trends for beef cattle production in Argentina. Anim Front 1:37–45

    Google Scholar 

  • Avci MA, Ozkose A, Tamkoc A (2013) Determination of yield and quality characteristics of alfalfa (Medicago sativa l.) varieties grown in different locations. J Amin Vet Adv 12:487–490

    Google Scholar 

  • Bogino P, Abod A, Nievas F, Giordano W (2013) Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere. PLoS ONE 8(11):e79614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caviglia OP, Andrade FH (2010) Sustainable intensification of agriculture in the Argentinean Pampas: capture and use efficiency of environmental resources. Am J Plant Sci Biotechnol 3:1–8

    Google Scholar 

  • Charoenpanich P, Becker A, Soto MJ, McIntosh M (2015) Quorum sensing restrains growth and is rapidly inactivated during domestication of Sinorhizobium meliloti. Environ Microbiol Rep 7:373–382

    CAS  PubMed  Google Scholar 

  • Denarié J, Debellé F, Promé JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    PubMed  Google Scholar 

  • Doherty D, Leigh JA, Glazebrook J, Walker GC (1988) Rhizobium meliloti mutants that overproduce the R. meliloti acidic calcofluor-binding exopolysaccharide. J Bacteriol 170:4249–4256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans LT (1993) Crop evolution. Adaptations and yield. Cambridge University Press, Cambridge

    Google Scholar 

  • Fraysse NF, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the Rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380

    CAS  PubMed  Google Scholar 

  • Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–205

    CAS  PubMed  Google Scholar 

  • Fujishige NA, Jankaew K, Hirsch AM (2008) Biofilm formation in Sinorhizobium meliloti. Biology of plant-microbe interactions, Volume 6. In: Proceedings of the 13th International Congress on Molecular Plant-Microbe Interactions. Eds. Lorito M, Woo SL, and Scala F. ISBN 0965462552

  • Garcia AN, Ayub ND, Fox AR, Gomez MC, Dieguez MJ, Pagano EM, Berini CA, Muschietti JP, Soto G (2014) Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol 14:248

    PubMed  PubMed Central  Google Scholar 

  • Geisseler D, Horwath WR (2016) Alfalfa production in California. https://apps1.cdfa.ca.gov/FertilizerResearch/docs/Alfalfa_Production_CA.pdf. Accessed 16 Apr 2019

  • Giordano W, Hirsch A (2004) The expression of MaEXP1, a Melilotus alba expansin gene is up-regulated during the sweetclover-Sinorhizobium meliloti interaction. Mol Plant Microbe Interact 17:613–622

    CAS  PubMed  Google Scholar 

  • Glazebrook J, Walker GC (1989) A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56:661–672

    CAS  PubMed  Google Scholar 

  • González JE, York GM, Walker GC (1996) Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene 179:141–146

    PubMed  Google Scholar 

  • Herridge D, Peoples M, Boddey R (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    CAS  Google Scholar 

  • Hirsch AM (1999) Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr Opin Plant Biol 2:320–326

    CAS  PubMed  Google Scholar 

  • Hirsch AM, Lum MR, Fujishige NA (2009) Microbial encounters of a symbiotic kind- attaching to roots and other surfaces. In: Emons AMC, Ketelaar T (eds) Root hairs. Plant cell monographs, 12th edn. Springer, Berlin, pp 295–314

    Google Scholar 

  • Janczarek M, Rachwal K, Marzec A, Grzadziel J, Palusinska-Szysz M (2014) Signal molecules and cell-surface components involved in early stages of the legume–Rhizobium interactions. Appl Soil Ecol 85:94–113

    Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jozefkowicz C, Brambilla S, Frare R, Stritzler M, Piccinetti C, Puente M, Berini C, Reyes Pérez P, Soto G, Ayub N (2017a) Stable symbiotic nitrogen fixation under water-deficit field conditions by a stress-tolerant alfalfa microsymbiont and its complete genome sequence. J Biotechnol 263:52–54

    CAS  PubMed  Google Scholar 

  • Jozefkowicz C, Brambilla S, Frare R, Stritzler M, Puente M, Piccinetti C, Soto G, Ayub N (2017b) Microevolution rather than large genome divergence determines the effectiveness of legume-rhizobia symbiotic interaction under field conditions. J Mol Evol 85:79–83

    CAS  PubMed  Google Scholar 

  • Kawaharada Y, Kelly S, Nielsen MW, Hjuler CT, Gysel K, Muszyński A, Carlson RW, Thygesen MB, Sandal N, Asmussen MH, Vinther M, Andersen SU, Krusell L, Thirup S, Jensen KJ, Ronson CW, Blaise M, Radutoiu S, Stougaard J (2015) Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523:308–312

    CAS  PubMed  Google Scholar 

  • Keller M, Roxlau A, Weng WM, Schmidt M, Quandt J, Niehaus K, Jording D, Arnold W, Pühler A (1995) Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. Mol Plant Microbe Interact 8:267–277

    CAS  PubMed  Google Scholar 

  • Kneen BE, LaRue TA (1983) Congo red absorption by Rhizobium leguminosarum. Appl Environ Microbiol 45:340–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • López SMY, Molina Sánchez MD, Pastorino GN, Franco MEE, García NT, Balatti PA (2018) Nodulation and delayed nodule senescence: strategies of two Bradyrhizobium japonicum isolates with high capacity to fix nitrogen. Curr Microbiol 75:997–1005

    PubMed  Google Scholar 

  • Marketon MM, González JE (2002) Identification of two quorum-sensing systems in Sinorhizobium meliloti. J Bacteriol 184:3466–3475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Hidalgo P, Hirsch AM (2017) The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes 1:70–82

    Google Scholar 

  • Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyama T (2017) The role of legume-Rhizobium symbiosis in sustainable agriculture. In: Sulieman S, Tran LS (eds) Legume nitrogen fixation in soils with low phosphorus availability. Springer, Cham, pp 1–20

    Google Scholar 

  • Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC (2002) A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J Bacteriol 184:5067–5076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reuber TL, Walker GC (1993) Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Cell 74:269–280

    CAS  PubMed  Google Scholar 

  • Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano W (2006) Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res Microbiol 157:867–875

    CAS  PubMed  Google Scholar 

  • Rinaudi LV, González JE (2009) The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation. J Bacteriol 191:7216–7224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rinaudi LV, Giordano W (2010) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304:1–11

    CAS  PubMed  Google Scholar 

  • Simon R, Hötte B, Klauke B, Kosier B (1991) Isolation and characterization of insertion sequence elements from gram-negative bacteria by using new broad-host-range, positive selection vectors. J Bacteriol 173:1502–1508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 16(5):7

    Google Scholar 

  • Sorroche F, Bogino P, Russo DM, Zorreguieta A, Nievas F, Morales GM, Hirsch AM, Giordano W (2018) Cell autoaggregation, biofilm formation, and plant attachment in a Sinorhizobium meliloti lpsB mutant. Mol Plant Microbe Interact 31:1075–1082

    CAS  PubMed  Google Scholar 

  • Sorroche F, Giordano W (2012) PCR analysis of expR gene regulating biosynthesis of exopolysaccharides in Sinorhizobium meliloti. Biochem Mol Biol Educ 40:108–111

    CAS  PubMed  Google Scholar 

  • Sorroche F, Rinaudi L, Zorreguieta A, Giordano W (2010) EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells. Curr Microbiol 61:465–470

    CAS  PubMed  Google Scholar 

  • Sorroche F, Spesia MB, Zorreguieta A, Giordano W (2012) A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol 78:4092–4101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vicario JC, Primo ED, Dardanelli MS, Giordano W (2015) Promotion of peanut growth by co-inoculation with selected strains of Bradyrhizobium and Azospirillum. J Plant Growth Regul 35:413–419

    Google Scholar 

  • Wells DH, Chen EJ, Fisher RF, Long SR (2007) ExoR is genetically coupled to the ExoS-ChvI two-component system and located in the periplasm of Sinorhizobium meliloti. Mol Microbiol 64:647–664

    CAS  PubMed  Google Scholar 

  • Zhan HJ, Lee CC, Leigh JA (1991) Induction of the second exopolysaccharide (EPSb) in Rhizobium meliloti SU47 by low phosphate concentrations. J Bacteriol 173:7391–7394

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Grants from the Secretaría de Ciencia y Técnica de la UNRC, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Consejo Nacional de Investigaciones Científicas y Técnicas of the República Argentina (CONICET) supported this work. EP and SC have a fellowship from the CONICET. FN, PB, and WG are Career Members of CONICET. Our thanks are due to Dr. Nicolás Ayub for helpful suggestions and useful discussions. Support from a Shanbrom Family Fund grant supported research on symbioses in arid environments in the Hirsch laboratory. This research was funded by FONCyT Grant number [PICT 1528/15].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Giordano.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Primo, E.D., Cossovich, S., Nievas, F. et al. Exopolysaccharide production in Ensifer meliloti laboratory and native strains and their effects on alfalfa inoculation. Arch Microbiol 202, 391–398 (2020). https://doi.org/10.1007/s00203-019-01756-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01756-3

Keywords

Navigation