Skip to main content
Log in

Effects of oral florfenicol on intestinal structure, function and microbiota in mice

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Many kinds of antibiotics have effects on intestinal structure and function. In the current experimental study, we evaluate the effect of oral florfenicol on intestinal barrier in mice. Thirty adult male mice were randomly divided into two groups, the group none (N) and the group florfenicol (F), the mice in group F were orally administered florfenicol 100 mg/kg body weight (BW) for 7 days. At day 8, mice were euthanized and sampled for the analysis of alterations in genes and proteins from jejunum, jejunum morphology and microbiota analysis. Administration of florfenicol caused higher liver index (P < 0.05). In the jejunum, mucosa injury and villus rupture, compared with the group N, the villus length and V/C (villus length/crypt depth) in group F were marked decrease (P < 0.01). The transcription level of Muc2 and occludin in group F were significantly lower than those in group N (P < 0.01 or P < 0.05). The expression of APRIL, IL-17, IL-22, BAFF and sIgA on protein level were significantly down-regulated (P < 0.01 or P < 0.05), while the expression of IL-10, TGF-β, IL-6, IL-4 were significantly up-regulated (P < 0.01) in group F. The abundances of bacteria in Firmicutes and Lactobacillus decreased significantly (P < 0.01) in group F. Our results indicated that oral administration of florfenicol might have a negative impact on functions of intestinal mucosal barrier, immune system and the intestinal microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The meta-genome data are available in the NCBI under BioProject PRJNA470777.

References

  • Anroopb N, Shery J (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7(2):27–31

    Article  Google Scholar 

  • Arques JL, Rodriguez E, Langa S, Landete JM, Medina M (2015) Antimicrobial activity of lactic acid bacteria in dairy products and gut: effect on pathogens. Biomed Res Int 2015:584183

    Article  Google Scholar 

  • Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG, Eberl G (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456(7221):507–510

    Article  CAS  Google Scholar 

  • Boyle EC, Brown NF, Finlay BB (2006) Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cell Microbiol 8(12):1946–1957

    Article  CAS  Google Scholar 

  • Cardiff RD, Miller CH, Munn RJ (2014) Munn RJ (2014) Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc 6:655–658

    Google Scholar 

  • Caspary WF (1992) Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr 55(1 Suppl):299S–308S

    Article  CAS  Google Scholar 

  • Castigli E, Scott S, Dedeoglu F, Bryce P, Jabara H, Bhan AK, Mizoguchi E, Geha RS (2004) Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci USA 101(11):3903–3908

    Article  CAS  Google Scholar 

  • Dowling PM (2013) Chloramphenicol, thiamphenicol and florfenicol. In: Giguere S, Prescott JF, Dowling PM (eds) Antimicrobial therapy in veterinary medicine, 5th edn. Wiley-Blackwell, Hoboken, pp 269–278

    Chapter  Google Scholar 

  • Elitok OM, Elitok B, Konak S, Demirel HH (2015) Clinical efficacy of florfenicol on caprine pasteurellosis. Small Ruminant Research 125:142–145

    Article  Google Scholar 

  • Hassanin O, Abdallah F, Awad A (2014) Effects of florfenicol on the immune responses and the interferon-inducible genes in broiler chickens under the impact of E. coli infection. Vet Res Commun 38(1):51–58

    Article  Google Scholar 

  • He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J, Shan M, Chadburn A, Villanacci V, Plebani A (2007) Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26(6):812–826

    Article  CAS  Google Scholar 

  • Hu D, Zhang T, Zhang Z, Wang G, Wang F, Qu Y, Niu Y, Liu S (2014) Toxicity to the hematopoietic and lymphoid organs of piglets treated with a therapeutic dose of florfenicol. Vet Immunol Immunopathol 162(3–4):122–131

    Article  CAS  Google Scholar 

  • Ismail AS, Severson KM, Vaishnava S, Behrendt CL, Yu X, Benjamin JL, Ruhn KA, Hou B, DeFranco AL, Yarovinsky F, Hooper LV (2011) Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci USA 108(21):8743–8748

    Article  CAS  Google Scholar 

  • Johansson ME, Jakobsson HE, Holmen-Larsson J, Schutte A, Ermund A, Rodriguez-Pineiro AM, Arike L, Wising C, Svensson F, Backhed F, Hansson GC (2015) Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 18(5):582–592

    Article  CAS  Google Scholar 

  • Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, Vos WMD (2016) Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 7:10410

    Article  CAS  Google Scholar 

  • Kumar A, Alrefai WA, Borthakur A, Dudeja PK (2015) Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 309(7):G602–G607

    Article  CAS  Google Scholar 

  • Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jorgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clement K, Dore J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Meta HITC, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546

    Article  Google Scholar 

  • Lis M, Szczypka M, Suszko A, Switala M, Obminska-Mrukowicz B (2011) The effects of florfenicol on lymphocyte subsets and humoral immune response in mice. Pol J Vet Sci 14(2):191–198

    Article  CAS  Google Scholar 

  • Marie-Agnès P, Nadia V, Ramadass B, Ester P, Flore DY, Antonia S, Philippe P, Fabien M (2010) Metronidazole effects on microbiota and mucus layer thickness in the rat gut. FEMS Microbiol Ecol 73(3):601–610

    Google Scholar 

  • Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489(7415):231–241

    Article  CAS  Google Scholar 

  • Neu HC, Fu KP (1980) In vitro activity of chloramphenicol and thiamphenicol analogs. Antimicrob Agents Chemother 18(2):311–316

    Article  CAS  Google Scholar 

  • Odenwald MA, Turner JR (2017) The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol 14(1):9–21

    Article  CAS  Google Scholar 

  • Pelissier MA, Vasquez N, Balamurugan R, Pereira E, Dossou-Yovo F, Suau A, Pochart P, Magne F (2010) Metronidazole effects on microbiota and mucus layer thickness in the rat gut. FEMS Microbiol Ecol 73(3):601–610

    CAS  PubMed  Google Scholar 

  • Ramanujam M, Davidson A (2008) BAFF blockade for systemic lupus erythematosus: will the promise be fulfilled? Immunol Rev 223:156–174

    Article  CAS  Google Scholar 

  • Ren SY, Geng Y, Wang KY, Zhou ZY, Liu XX, He M, Peng X, Wu CY, Lai WM (2014) Streptococcus agalactiae infection in domestic rabbits Oryctolagus cuniculus. Transbound Emerg Dis 61(6):e92–95

    Article  CAS  Google Scholar 

  • Romanov V, Whyard TC, Waltzer WC, Gabig TG (2014) A claudin 3 and claudin 4-targeted Clostridium perfringens protoxin is selectively cytotoxic to PSA-producing prostate cancer cells. Cancer Lett 351(2):260–264

    Article  CAS  Google Scholar 

  • Sams RA (1995) Florfenicol: chemistry and metabolism of a novel broad-spectrum antbiotic. Tieraerztliche Umschau 50(10):703–707

    Google Scholar 

  • Seth A, Yan F, Polk DB, Rao RK (2008) Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 294(4):G1060–1069

    Article  CAS  Google Scholar 

  • Shah JM, Qureshi TA, Shah T, Shah QA, Arain MA, Bhutto ZA, Saeed M, Siyal FA (2016) Impact of therapeutic and high doses of florfenicol on kidney and liver functional indicators in goat. Vet World 9(10):1135–1140

    Article  CAS  Google Scholar 

  • Shuang G, Yu S, Weixiao G, Dacheng W, Zhichao Z, Jing L, Xuming D (2011) Immunosuppressive activity of florfenicol on the immune responses in mice. Immunol Invest 40(4):356–366

    Article  Google Scholar 

  • Sieroslawska A, Studnicka M, Bownik A, Rymuszka A, Siwicki AK (1998) Antibiotics and cell-mediated immunity in fish—in vitro study. Acta Veterinaria Brno 67(4):329–334

    Article  Google Scholar 

  • Suzuki T, Yoshinaga N, Tanabe S (2011) Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem 286(36):31263–31271

    Article  CAS  Google Scholar 

  • Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809

    Article  CAS  Google Scholar 

  • Vangay P, Ward T, Gerber JS, Knights D (2015) Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 17(5):553–564

    Article  CAS  Google Scholar 

  • Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS, Gill N, Russell SL, Vallance BA, Finlay BB (2011) Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun 79(4):1536–1545

    Article  CAS  Google Scholar 

  • Yirga H (2015) The use of probiotics in animal nutrition. J Prob Health 3(2):132

    Article  Google Scholar 

  • Zhang X, Song Y, Ci X, An N, Fan J, Cui J, Deng X (2008) Effects of florfenicol on early cytokine responses and survival in murine endotoxemia. Int Immunopharmacol 8(7):982–988

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the scientific and technological project of Shanxi Province, China (Grant No. 20140311022-1) and the Key project of Shanxi Key R&D Program of China (Grant No. 201703D211001-05-02). All experiments were carried out in compliance with the current laws of China.

Author information

Authors and Affiliations

Authors

Contributions

ZD designed the experiments. SY, YG, LY, WS, ZW, SW, DZ, HW, JC, YS, ZD, performed the experimental work. SY analyzed the data analysis. SY and XZ wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhibian Duan.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 240 kb)

Supplementary file2 (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, S., Guo, Y., Yang, L. et al. Effects of oral florfenicol on intestinal structure, function and microbiota in mice. Arch Microbiol 202, 161–169 (2020). https://doi.org/10.1007/s00203-019-01731-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01731-y

Keywords

Navigation