Skip to main content
Log in

Effects of l-arabinose efflux on λ Red recombination-mediated gene knockout in multiple-antimicrobial-resistant Salmonella enterica serovar Choleraesuis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In this study, six swine-derived multiple-antimicrobial-resistant (MAR) strains of Salmonella Choleraesuis (S. Choleraesuis) were demonstrated to possess higher efflux pump activity than the wild-type (WT). l-Arabinose, a common inducer for gene expression, modulated S. Choleraesuis efflux pump activity in a dose-dependent manner. At low l-arabinose concentrations, increasing l-arabinose led to a corresponding increase in fluorophore efflux, while at higher l-arabinose concentrations, increasing l-arabinose decreased fluorophore efflux activity. The WT S. Choleraesuis that lacks TolC (ΔtolC), an efflux protein associated with bacterial antibiotic resistance and virulence, was demonstrated to possess a significantly reduced ability to extrude l-arabinose. Further, due to the rapid export of l-arabinose, an efficient method for recombination-mediated gene knockout, the l-arabinose-inducible bacteriophage λ Red recombinase system, has a reduced recombination frequency (~ 12.5%) in clinically isolated MAR Salmonella strains. An increased recombination frequency (up to 60%) can be achieved using a higher concentration of l-arabinose (fivefold) for genetic manipulation and functional analysis for MAR Salmonella using the λ Red system. The study suggests that l-arabinose serves not only as an inducer of the TolC-dependent efflux system but also acts as a competitive substrate of the efflux system. In addition, understanding the TolC-dependent efflux of l-arabinose should facilitate the optimization of l-arabinose induction in strains with high efflux activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen HK, Donato J, Wang HH et al (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259. doi:10.1038/nrmicro2312

    Article  CAS  PubMed  Google Scholar 

  • Baucheron S, Imberechts H, Chaslus-Dancla E et al (2002) The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204. Microb Drug Resist 8:281–289. doi:10.1089/10766290260469543

    Article  CAS  PubMed  Google Scholar 

  • Baucheron S, Tyler S, Boyd D et al (2004) AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium DT104. Antimicrob Agents Chemother 48:3729–3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu CH, Su LH, Chu C (2004) Salmonella enterica serotype Choleraesuis: epidemiology, pathogenesis, clinical disease, and treatment. Clin Microbiol Rev 17:311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coldham NG, Webber M, Woodward MJ et al (2010) A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J Antimicrob Chemother 65:1655–1663. doi:10.1093/jac/dkq169

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. doi:10.1073/pnas.120163297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derbise A, Lesic B, Dacheux D et al (2003) A rapid and simple method for inactivating chromosomal genes in Yersinia. FEMS Immunol Med Microbiol 38:113–116

    Article  CAS  PubMed  Google Scholar 

  • Gallegos MT, Michan C, Ramos JL (1993) The XylS/AraC family of regulators. Nucleic Acids Res 21:807–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman LM, Belin D, Carson MJ et al (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horiyama T, Yamaguchi A, Nishino K (2010) TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 65:1372–1376. doi:10.1093/jac/dkq160

    Article  CAS  PubMed  Google Scholar 

  • Husseiny MI, Hensel M (2005) Rapid method for the construction of Salmonella enterica serovar Typhimurium vaccine carrier strains. Infect Immun 73:1598–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kariuki SM (1994) Plasmids and antimicrobial drug resistance in bacteria. East Afr Med J 71:617–618

    CAS  PubMed  Google Scholar 

  • Karlinsey JE (2007) Lambda-Red genetic engineering in Salmonella enterica serovar Typhimurium. Methods Enzymol 421:199–209

    Article  CAS  PubMed  Google Scholar 

  • Koita K, Rao CV (2012) Identification and analysis of the putative pentose sugar efflux transporters in Escherichia coli. PLoS One 7:e43700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JJ, Hsuan SL, Kuo CJ et al (2015) MarA and ramA regulate virulence in Salmonella enterica serovar Choleraesuis. Vet Microbiol 181:323–327. doi:10.1016/j.vetmic.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  • Lee JJ, Wu YC, Kuo CJ et al (2016) TolC is important for bacterial survival and oxidative stress response in Salmonella enterica serovar Choleraesuis in an acidic environment. Vet Microbiol 193:42–48. doi:10.1016/j.vetmic.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  • Lesic B, Rahme LG (2008) Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Mol Biol 9:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesic B, Bach S, Ghigo JM et al (2004) Excision of the high-pathogenicity island of Yersinia pseudotuberculosis requires the combined actions of its cognate integrase and Hef, a new recombination directionality factor. Mol Microbiol 52:1337–1348

    Article  CAS  PubMed  Google Scholar 

  • Loessner H, Endmann A, Leschner S et al (2007) Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of l-arabinose as inducer of bacterial gene expression in vivo. Cell Microbiol 9:1529–1537. doi:10.1111/j.1462-5822.2007.00890.x

    Article  CAS  PubMed  Google Scholar 

  • Melrose J, Sturgeon RJ (1983) An enzymatic assay of l-arabinose, using beta-d-galactose dehydrogenase: its application in the assay of alpha-L-arabinofuranosidase. Carbohydr Res 118:247–253. doi:10.1016/0008-6215(83)88052-5

    Article  CAS  Google Scholar 

  • Murphy KC (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180:2063–2071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikaido H (1996) Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 178:5853–5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikaido H (1998) The role of outer membrane and efflux pumps in the resistance of gram-negative bacteria. Can we improve drug access? Drug Resist Updates 1:93–98

    Article  CAS  Google Scholar 

  • Pradel E, Pages JM (2002) The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob Agents Chemother 46:2640–2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranallo RT, Barnoy S, Thakkar S et al (2006) Developing live Shigella vaccines using lambda red recombineering. FEMS Immunol Med Microbiol 47:462–469

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Wang H, Hu K et al (2003) Identification of alkA gene related to virulence of Shigella flexneri 2a by mutational analysis. World J Gastroenterol 9:2720–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JT, Lewin CS (1993) Mechanisms of antimicrobial resistance and implications for epidemiology. Vet Microbiol 35:233–242

    Article  CAS  PubMed  Google Scholar 

  • Van Bambeke F, Balzi E, Tulkens PM (2000) Antibiotic efflux pumps. Biochem Pharmacol 60:457–470

    Article  PubMed  Google Scholar 

  • Yu D, Ellis HM, Lee EC et al (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zgurskaya HI, Nikaido H (2000) Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 37:219–225

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Cui S, Meng J (2009) Effect of transcriptional activators RamA and SoxS on expression of multidrug efflux pumps AcrAB and AcrEF in fluoroquinolone-resistant Salmonella Typhimurium. J Antimicrob Chemother 63:95–102

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chih-Jung Kuo or Ter-Hsin Chen.

Ethics declarations

Conflict of interest

None of the authors of this paper has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the paper.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2017_1436_MOESM1_ESM.tif

Supplementary Fig. 1 Standard curve obtained by reacting different concentrations of l-arabinose with β-NAD and GalDH for 30 min and recorded by a spectrophotometer at 340 nm (TIFF 2310 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, SW., Lee, JJ., Ptak, C.P. et al. Effects of l-arabinose efflux on λ Red recombination-mediated gene knockout in multiple-antimicrobial-resistant Salmonella enterica serovar Choleraesuis. Arch Microbiol 200, 219–225 (2018). https://doi.org/10.1007/s00203-017-1436-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1436-4

Keywords

Navigation