Skip to main content
Log in

Alpha-ketoglutarate enhances freeze–thaw tolerance and prevents carbohydrate-induced cell death of the yeast Saccharomyces cerevisiae

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Stress resistance and fermentative capability are important quality characteristics of baker’s yeast. In the present study, we examined protective effects of exogenous alpha-ketoglutarate (AKG), an intermediate of the tricarboxylic acid cycle and amino acid metabolism, against freeze–thaw and carbohydrate-induced stresses in the yeast Saccharomyces cerevisiae. Growth on AKG-supplemented medium prevented a loss of viability and improved fermentative capacity of yeast cells after freeze–thaw treatment. The cells grown in the presence of AKG had higher levels of amino acids (e.g., proline), higher metabolic activity and total antioxidant capacity, and higher activities of catalase, NADP-dependent glutamate dehydrogenase and glutamine synthase compared to control ones. Both synthesis of amino acids and enhancement of antioxidant system capacity could be involved in AKG-improved freeze–thaw tolerance in S. cerevisiae. Cell viability dramatically decreased under incubation of stationary-phase yeast cells in 2% glucose or fructose solutions (in the absence of the other nutrients) as compared with incubation in distilled water or in 10 mM AKG solution. The decrease in cell viability was accompanied by acidification of the medium, and decrease in cellular respiration, aconitase activity, and levels of total protein and free amino acids. The supplementation with 10 mM AKG effectively prevented carbohydrate-induced yeast death. Protective mechanisms of AKG could be associated with the intensification of respiration and prevention of decreasing protein level as well as with direct antioxidant AKG action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AKG:

Alpha-ketoglutarate

CFU:

Colony-forming unit

DC:

α-dicarbonyl compounds

GDH:

Glutamate dehydrogenase

GR:

Glutathione reductase

GS:

Glutamine synthase

G6PDH:

Glucose-6-phosphate dehydrogenase

KPi:

Potassium phosphate buffer

ROS:

Reactive oxygen species

TAC:

Total antioxidant capacity

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ballester-Tomás L, Randez-Gil F, Pérez-Torrado R, Prieto JA (2015) Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae. Microb Cell Fact 14:100. doi:10.1186/s12934-015-0289-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Bayliak MM, Lylyk MP, Shmihel HV, Sorochynska OM, Manyukh OV, Pierzynowski SG, Lushchak VI (2016a) Dietary alpha-ketoglutarate increases cold tolerance in Drosophila melanogaster and enhances protein pool and antioxidant defense in sex-specific manner. J Therm Biol 60:1–11

    Article  CAS  PubMed  Google Scholar 

  • Bayliak MM, Lylyk MP, Vytvytska OM, Lushchak VI (2016b) Assessment of antioxidant properties of alpha-keto acids in vitro and in vivo. Eur Food Res Technol 242(2):179–188. doi:10.1007/s00217-015-2529-4

    Article  CAS  Google Scholar 

  • Bayliak MM, Burdyliuk NI, Lushchak VI (2017) Growth on alpha-ketoglutarate increases oxidative stress resistance in the yeast Saccharomyces cerevisiae. Int J Microbiol. doi:10.1155/2017/5792192 (article ID 5792192)

    PubMed  PubMed Central  Google Scholar 

  • Bergman I, Loxley R (1970) New spectrophotometric method for the determination of proline in tissue hydrolyzates. Anal Chem 42:702–706

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8(8):1256–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conconi A, Jager-Vottero P, Zhang X, Beard BC, Smerdon MJ (2000) Mitotic viability and metabolic competence in UV-irradiated yeast cells. Mutat Res 459:55–64

    Article  CAS  PubMed  Google Scholar 

  • Doherty D (1970) l-Glutamate dehydrogenases (yeast). Meth Enzymol 17:850–856

    Article  Google Scholar 

  • Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37(4):277–285

    Article  CAS  PubMed  Google Scholar 

  • Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2(2):73–81

    Article  CAS  PubMed  Google Scholar 

  • Fedotcheva NI, Sokolov AP, Kondrashova MN (2006) Nonezymatic formation of succinate in mitochondria under oxidative stress. Free Radic Biol Med 41(1):56–64

    Article  CAS  PubMed  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Granot D, Dai N (1997) Sugar induced cell death in yeast is dependent on the rate of sugar phosphorylation as determined by Arabidopsis thaliana hexokinase. Cell Death Differ 4(7):555–559

    Article  CAS  PubMed  Google Scholar 

  • Granot D, Snyder M (1993) Carbon source induces growth of stationary phase yeast cells, independent of carbon source metabolism. Yeast 9:465–479

    Article  CAS  PubMed  Google Scholar 

  • Granot D, Levine A, Dor-Hefetz E (2003) Sugar-induced apoptosis in yeast cells. FEMS Yeast Res 4(1):7–13

    Article  CAS  PubMed  Google Scholar 

  • Guaragnella N, Antonacci L, Passarella S, Marra E, Giannattasio S (2007) Hydrogen peroxide and superoxide anion production during acetic acid-induced yeast programmed cell death. Folia Microbiol (Praha) 52(3):237–240

    Article  CAS  Google Scholar 

  • Guaragnella N, Antonacci L, Passarella S, Marra E, Giannattasio S (2011) Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways. Biochem Soc Trans 39(5):1538–1543

    Article  CAS  PubMed  Google Scholar 

  • Guaragnella N, Zdralević M, Lattanzio P, Marzulli D, Pracheil T, Liu Z, Passarella S, Marra E, Giannattasio S (2013) Yeast growth in raffinose results in resistance to acetic-acid induced programmed cell death mostly due to the activation of the mitochondrial retrograde pathway. Biochim Biophys Acta 1833 12:2765–2774

    Article  Google Scholar 

  • Harrison AP, Pierzynowski SG (2008) Biological effects of 2-oxoglutarate with particular emphasis on the regulation of protein, mineral and lipid absorption/metabolism, muscle performance, kidney function, bone formation and cancerogenesis, all viewed from a healthy ageing perspective state of the art-review article. J Physiol Pharmacol 59(Suppl. 1):91–106

    PubMed  Google Scholar 

  • Hausladen A, Fridovich I (1994) Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269(47):29405–29408

    CAS  PubMed  Google Scholar 

  • Iland P, Grbin P, Grinbergs M, Schmidtke L, Soden A (2007) Yeast viability—staining methods. In: Iland P (ed) Microbiological analysis of grapes and wine: techniques and concepts. Patrick Iland Wine Promotions Pty Ltd, Campbelltown, pp 111–112

    Google Scholar 

  • Kurgalyuk NM, Goryn OV (2000) Effect of sodium α-ketoglutarate injected after the X-ray treatment on the respiration and oxidative phosphorylation of the liver’s mitochondria. Fiziol Zh 46(5):63–70

    CAS  Google Scholar 

  • Lee YP, Takahashi T (1966) An improved colorimetric determination of amino acids with the use of ninhydrin. Anal Biochem 14(1):71–77

    Article  CAS  Google Scholar 

  • Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI (2010) Oxidative stress in yeast. Biochemistry (Moscow) 75:281–296

    Article  CAS  Google Scholar 

  • Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. doi:10.1155/2012/736837 (article ID 736837)

    PubMed  PubMed Central  Google Scholar 

  • Lushchak V, Semchyshyn H, Mandryk S, Lushchak O (2005) Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions. Arch Biochem Biophys 441:35–40

    Article  CAS  PubMed  Google Scholar 

  • Lushchak OV, Piroddi M, Galli F, Lushchak VI (2014) Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep 19(1):8–15

    Article  CAS  PubMed  Google Scholar 

  • Magasanik B (2003) Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot Cell 2(5):827–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchel RE, Birnboim HC (1977) The use of Girard-T reagent in a rapid and sensitive method for measuring glyoxal and certain other alpha-dicarbonyl compounds. Anal Biochem 81(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Niemiec T, Sikorska J, Harrison A, Szmidt M, Sawosz E, Wirth-Dzieciolowska E, Wilczak J, Pierzynowski S (2011) Alpha-ketoglutarate stabilizes redox homeostasis and improves arterial elasticity in aged mice. J Physiol Pharmacol 62(1):37–43

    CAS  PubMed  Google Scholar 

  • Park JI, Grant CM, Attfield PV, Dawes IW (1997) The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. Appl Environ Microbiol 63(10):3818–3824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JI, Grant CM, Davies MJ, Dawes IW (1998) The cytoplasmic Cu, Zn superoxide dismutase of Saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing. J Biol Chem 273(36):22921–22928

    Article  CAS  PubMed  Google Scholar 

  • Parrou JL, François J (1997) A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem 248(1):186–188

    Article  CAS  PubMed  Google Scholar 

  • Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H (2012a) Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker’s yeast. Microb Cell Fact 11:40. doi:10.1186/1475-2859-11-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H (2012b) Simultaneous accumulation of proline and trehalose in industrial baker’s yeast enhances fermentation ability in frozen dough. J Biosci Bioeng 113(5):592–595

    Article  CAS  PubMed  Google Scholar 

  • Sasano Y, Haitani Y, Ohtsu I, Shima J, Takagi H (2012c) Proline accumulation in baker’s yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Int J Food Microbiol 152(1–2):40–43

    Article  CAS  PubMed  Google Scholar 

  • Semchyshyn H (2014) Reactive carbonyl species in vivo: generation and dual biological effects. Sci World J. doi:10.1155/2014/417842 (article ID 417842)

    Google Scholar 

  • Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI (2011a) Acetate but not propionate induces oxidative stress in bakers’ yeast Saccharomyces cerevisiae. Redox Rep 16(1):15–23

    Article  CAS  PubMed  Google Scholar 

  • Semchyshyn HM, Lozinska LM, Miedzobrodzki J, Lushchak VI (2011b) Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells. Carbohydr Res 346(7):933–938

    Article  CAS  PubMed  Google Scholar 

  • Semchyshyn HM, Miedzobrodzki J, Bayliak MM, Lozinska LM, Homza BV (2014) Fructose compared with glucose is more a potent glycoxidation agent in vitro, but not under carbohydrate-induced stress in vivo: potential role of antioxidant and antiglycation enzymes. Carbohydr Res 384:61–69

    Article  CAS  PubMed  Google Scholar 

  • Sumbhate S, Nayak S, Goupale D, Tiwari A, Jadon RS (2012) Colorimetric method for the estimation of ethanol in alcoholic-drinks. J Anal Tech 1(1):1–6

    Google Scholar 

  • Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81(2):211–223

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Shima J (2015) Stress baker’s yeast during baking process. In: Takagi H, Kitagaki H (eds) Stress biology of yeasts and fungi. Applications for industrial brewing and fermentation. Springer, Tokyo, Heidelberg, New York, Dordrecht, London, pp 23–42. doi:10.1007/978-4-431-55248-2

    Chapter  Google Scholar 

  • Van Hoek P, Van Dijken JP, Pronk JT (1998) Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl Environ Microbiol 64(11):4226–4233

    PubMed  PubMed Central  Google Scholar 

  • Vasylkovska R, Petriv N, Semchyshyn H (2015) Carbon sources for yeast growth as a precondition of hydrogen peroxide induced hormetic phenotype. Int J Microbiol. doi:10.1155/2015/697813 (article ID 697813)

    PubMed  PubMed Central  Google Scholar 

  • Whillier S, Garcia B, Chapman BE, Kuchel PW, Raftos JE (2011) Glutamine and α-ketoglutarate as glutamate sources for glutathione synthesis in human erythrocytes. FEBS J 278:3152–3163

    Article  CAS  PubMed  Google Scholar 

  • Woolfolk CA, Shapiro B, Stadtman ER (1966) Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherichia coli. Arch Biochem Biophys 116:177–192

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Yoshimoto H (2015) Nutrient stress responses of the bottom-fermenting yeast. In: Takagi H, Kitagaki H (eds) Stress biology of yeasts and fungi Applications for industrial brewing and fermentation. Springer, Tokyo, Heidelberg, New York, Dordrecht, London, pp 123–136. doi:10.1007/978-4-431-55248-2

    Chapter  Google Scholar 

  • Yoshimoto H, Ohuchi R, Ikado K, Yoshida S, Minato T, Ishiguro T, Mizutani S, Kobayashi O (2009) Sugar induces death of the bottom fermenting yeast Saccharomyces pastorianus. J Biosci Bioeng 108(1):60–62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Youshiharu Inoue (Kyoto University, Japan) for the providing S. cerevisiae strain. We express our sincere gratitude to Dr. Dmytro Gospodaryov for polarography measurements and critical reading of the manuscript and Dr. Meet R. Zandawala (Stockholm University) for English correction of the article. The work was partially supported by the Ministry of Education and Science of Ukraine (#0115U002304) to Volodymyr I. Lushchak. Two anonymous reviewers are acknowledged for their highly professional and helpful recommendations for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria M. Bayliak.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest.

Additional information

Communicated by Olaf Kniemeyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayliak, M.M., Hrynkiv, O.V., Knyhynytska, R.V. et al. Alpha-ketoglutarate enhances freeze–thaw tolerance and prevents carbohydrate-induced cell death of the yeast Saccharomyces cerevisiae . Arch Microbiol 200, 33–46 (2018). https://doi.org/10.1007/s00203-017-1423-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1423-9

Keywords

Navigation