Skip to main content
Log in

Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alsaid M, Daud H, Bejo SK, Abuseliana A (2010) Antimicrobial activities of some culinary spice extracts against Streptococcus agalactiae and its prophylactic uses to prevent streptococcal infection in red hybrid tilapia (Oreochromis sp.). World J Fish Marine Sci 2(6):532–538

    Google Scholar 

  • Andersen JL, He GX, Kakarla P, KC R, Kumar S, Lakra WS, Mukherjee MM, Ranaweera I, Shrestha U, Tran T, Varela MF (2015) Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health 12(2):1487–1547. doi:10.3390/ijerph120201487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avato P, Tursil E, Vitali C, Miccolis V, Candido V (2000) Allylsulfide constituents of garlic volatile oil as antimicrobial agents. Phytomedicine 7(3):239–243

    Article  CAS  PubMed  Google Scholar 

  • Barrero MA, Pietralonga PA, Schwarz DG, Silva A Jr, Paula SO, Moreira MA (2014) Effect of the inhibitors phenylalanine arginyl β-naphthylamide (PAβN) and 1-(1-naphthylmethyl)-piperazine (NMP) on expression of genes in multidrug efflux systems of Escherichia coli isolates from bovine mastitis. Res Vet Sci 97(2):176–181. doi:10.1016/j.rvsc.2014.05.013

    Article  PubMed  Google Scholar 

  • Bhardwaj AK, Mohanty P (2012) Bacterial efflux pumps involved in multidrug resistance and their inhibitors: rejuvinating the antimicrobial chemotherapy. Recent Pat Anti infect Drug Discov 7(1):73–89

    Article  CAS  Google Scholar 

  • Blair JM, Richmond GE, Piddock LJ (2014) Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 9(10):1165–1177. doi:10.2217/fmb.14.66

    Article  CAS  PubMed  Google Scholar 

  • Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13(1):42–51. doi:10.1038/nrmicro3380

    Article  CAS  PubMed  Google Scholar 

  • Bolton S, Null G, Troetel WM (1982) The medical uses of garlic–fact and fiction. Am Pharm NS22 8:40–43

    Article  Google Scholar 

  • Chen J, Morita Y, Huda MN, Kuroda T, Mizushima T, Tsuchiya T (2002) VmrA, a member of a novel class of Na+ -coupled multidrug efflux pumps from Vibrio parahaemolyticus. J Bacteriol 184(2):572–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Kuroda T, Huda MN, Mizushima T, Tsuchiya T (2003) An RND-type multidrug efflux pump SdeXY from Serratia marcescens. J Antimicrob Chemother 52(2):176–179. doi:10.1093/jac/dkg308

    Article  CAS  PubMed  Google Scholar 

  • Chung YJ, Saier MH Jr (2001) SMR-type multidrug resistance pumps. Curr Opin Drug Discov Dev 4(2):237–245

    CAS  Google Scholar 

  • Chung JG, Chen GW, Wu LT, Chang HL, Lin JG, Yeh CC, Wang TF (1998) Effects of garlic compounds diallyl sulfide and diallyl disulfide on arylamine N-acetyltransferase activity in strains of Helicobacter pylori from peptic ulcer patients. Am J Chin Med 26(3–4):353–364. doi:10.1142/S0192415X98000397

    Article  CAS  PubMed  Google Scholar 

  • Dini C, Fabbri A, Geraci A (2011) The potential role of garlic (Allium sativum) against the multi-drug resistant tuberculosis pandemic: a review. Ann Ist Super Sanita 47(4):465–473. doi:10.4415/ANN_11_04_18

    PubMed  Google Scholar 

  • Dymek A, Armada A, Handzlik J, Viveiros M, Spengler G, Molnar J, Kiec-Kononowicz K, Amaral L (2012) The activity of 16 new hydantoin compounds on the intrinsic and overexpressed efflux pump system of Staphylococcus aureus. Vivo 26(2):223–229

    CAS  Google Scholar 

  • Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62(4):1301–1314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Floyd JL, Smith KP, Kumar SH, Floyd JT, Varela MF (2010) LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob Agents Chemother 54(12):5406–5412. doi:10.1128/AAC.00580-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floyd JL, Kumar S, Mukherjee MM, He G, Varela MF (2013) A review of the molecular mechanisms of drug efflux in pathogenic bacteria: a structure-function perspective. Recent Res. Devel. Membrane Biol, vol 3. Research Signpost, Inc, Trivandrum, pp 15–66

    Google Scholar 

  • Ghosh A, Ramamurthy T (2011) Antimicrobials and cholera: are we stranded? Indian J Med Res 133:225–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goncagul G, Ayaz E (2010) Antimicrobial effect of garlic (Allium sativum). Recent Pat Antiinfect Drug Discov 5(1):91–93

    Article  CAS  PubMed  Google Scholar 

  • Harris JC, Cottrell SL, Plummer S, Lloyd D (2001) Antimicrobial properties of Allium sativum (garlic). Appl Microbiol Biotechnol 57(3):282–286

    Article  CAS  PubMed  Google Scholar 

  • He GX, Kuroda T, Mima T, Morita Y, Mizushima T, Tsuchiya T (2004) An H+ -coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J Bacteriol 186(1):262–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He GX, Thorpe C, Walsh D, Crow R, Chen H, Kumar S, Varela MF (2011a) EmmdR, a new member of the MATE family of multidrug transporters, extrudes quinolones from Enterobacter cloacae. Arch Microbiol 193(10):759–765. doi:10.1007/s00203-011-0738-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He GX, Zhang C, Crow RR, Thorpe C, Chen H, Kumar S, Tsuchiya T, Varela MF (2011b) SugE, a new member of the SMR family of transporters, contributes to antimicrobial resistance in Enterobacter cloacae. Antimicrob Agents Chemother 55(8):3954–3957. doi:10.1128/AAC.00094-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He GX, Landry M, Chen H, Thorpe C, Walsh D, Varela MF, Pan H (2014) Detection of benzalkonium chloride resistance in community environmental isolates of staphylococci. J Med Microbiol 63(Pt 5):735–741. doi:10.1099/jmm.0.073072-0

    Article  CAS  PubMed  Google Scholar 

  • Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406(6795):477–483. doi:10.1038/35020000

    Article  CAS  PubMed  Google Scholar 

  • Horiyama T, Yamaguchi A, Nishino K (2010) TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 65(7):1372–1376. doi:10.1093/jac/dkq160

    Article  CAS  PubMed  Google Scholar 

  • Hsieh MH, Yu CM, Yu VL, Chow JW (1993) Synergy assessed by checkerboard. A critical analysis. Diagn Microbiol Infect Dis 16(4):343–349

    Article  CAS  PubMed  Google Scholar 

  • Iwalokun BA, Ogunledun A, Ogbolu DO, Bamiro SB, Jimi-Omojola J (2004) In vitro antimicrobial properties of aqueous garlic extract against multidrug-resistant bacteria and Candida species from Nigeria. J Med Food 7(3):327–333. doi:10.1089/jmf.2004.7.327

    Article  CAS  PubMed  Google Scholar 

  • Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105(2):425–448. doi:10.1021/cr030103a

    Article  CAS  PubMed  Google Scholar 

  • Kitaoka M, Miyata ST, Unterweger D, Pukatzki S (2011) Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol 60(Pt 4):397–407. doi:10.1099/jmm.0.023051-0

    Article  PubMed  Google Scholar 

  • Krieg PA, Melton DA (1987) In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol 155:397–415

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Schweizer HP (2005) Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57(10):1486–1513. doi:10.1016/j.addr.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Varela MF (2012) Biochemistry of bacterial multidrug efflux pumps. Int J Mol Sci 13(4):4484–4495. doi:10.3390/ijms13044484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Varela MF (2013) Molecular mechanisms of bacterial resistance to antimicrobial agents. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Inc., Badajoz, Spain, pp 522–534

  • Kumar S, Mukherjee MM, Varela MF (2013a) Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily. Int J Bacteriol. doi:10.1155/2013/204141

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Floyd JT, He G, Varela MF (2013b) Bacterial antimicrobial efflux pumps of the MFS and MATE transporter families: a review. In: Shankar P (ed) Recent research developments in antimicrobial agents and chemotherapy, vol 7. Research Signpost Inc, Trivandrum, pp 1–21

    Google Scholar 

  • Kumar S, Lindquist IE, Sundararajan A, Rajanna C, Floyd JT, Smith KP, Andersen JL, He G, Ayers RM, Johnson JA, Werdann JJ, Sandoval AA, Mojica NM, Schilkey FD, Mudge J, Varela MF (2013c) Genome Sequence of Non-O1 Vibrio cholerae PS15. Genome Announc. doi:10.1128/genomeA.00227-12

    Google Scholar 

  • Kumar S, He G, Kakarla P, Shrestha U, Ranjana KC, Ranaweera I, Mark Willmon T, Barr SR, Hernandez AJ, Varela MF (2016) Bacterial Multidrug Efflux Pumps of the Major Facilitator Superfamily as Targets for Modulation. Infect Disord Drug Targets 16:28–43. doi:10.2174/1871526516666160407113848

    Article  CAS  PubMed  Google Scholar 

  • Kuroda T, Tsuchiya T (2009) Multidrug efflux transporters in the MATE family. Biochim Biophys Acta 1794(5):763–768. doi:10.1016/j.bbapap.2008.11.012

    Article  CAS  PubMed  Google Scholar 

  • Lage H (2003) ABC-transporters: implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Agents 22(3):188–199

    Article  CAS  PubMed  Google Scholar 

  • Leibovici-Weissman Y, Neuberger A, Bitterman R, Sinclair D, Salam MA, Paul M (2014) Antimicrobial drugs for treating cholera. Cochrane Database Syst Rev 6:CD008625. doi:10.1002/14651858.CD008625.pub2

    Google Scholar 

  • Levy SB (1989) Evolution and spread of tetracycline resistance determinants. J Antimicrob Chemother 24(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2001) In search of natural substrates and inhibitors of MDR pumps. J Mol Microbiol Biotechnol 3(2):247–254

    CAS  PubMed  Google Scholar 

  • Lomovskaya O, Watkins W (2001a) Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J Mol Microbiol Biotechnol 3(2):225–236

    CAS  PubMed  Google Scholar 

  • Lomovskaya O, Watkins WJ (2001b) Efflux pumps: their role in antibacterial drug discovery. Curr Med Chem 8(14):1699–1711

    Article  CAS  PubMed  Google Scholar 

  • Mekalanos JJ (1983) Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35(1):253–263

    Article  CAS  PubMed  Google Scholar 

  • Mikaili P, Maadirad S, Moloudizargari M, Aghajanshakeri S, Sarahroodi S (2013) Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran J Basic Med Sci 16(10):1031–1048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee M, Kakarla P, Kumar S, Gonzalez E, Floyd JT, Inupakutika M, Devireddy AR, Tirrell SR, Bruns M, He G, Lindquist IE, Sundararajan A, Schilkey FD, Mudge J, Varela MF (2014) Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae. Genom Discov 2(1):1–15. doi:10.7243/2052-7993-2-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee MM, Kumar S, Shrestha U, Ranaweera I, KC R, Kakarla P, Willmon TM, Hernandez AJ, He G, Lau C, Barr SR, Varela MF (2016) Comparative genomics and discovery of novel cellular targets for the development of new therapeutics towards Vibrio cholerae, the causative agent of cholera disease. Anti Infect Agents 14(2):88–99. doi:10.2174/2211352514666160816151125

    Article  CAS  Google Scholar 

  • Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794(5):769–781. doi:10.1016/j.bbapap.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  • Odds FC (2003) Synergy, antagonism, and what the chequer board puts between them. J Antimicrob Chemother 52(1):1. doi:10.1093/jac/dkg301

    Article  CAS  PubMed  Google Scholar 

  • Opperman TJ, Nguyen ST (2015) Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 6:421. doi:10.3389/fmicb.2015.00421

    Article  PubMed  PubMed Central  Google Scholar 

  • Otsuka M, Yasuda M, Morita Y, Otsuka C, Tsuchiya T, Omote H, Moriyama Y (2005) Identification of essential amino acid residues of the NorM Na+/ multidrug antiporter in Vibrio parahaemolyticus. J Bacteriol 187(5):1552–1558. doi:10.1128/JB.187.5.1552-1558.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pages JM, Amaral L (2009) Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta 1794(5):826–833. doi:10.1016/j.bbapap.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  • Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60(4):575–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piddock LJ (1999) Mechanisms of fluoroquinolone resistance: an update 1994-1998. Drugs 58(Suppl 2):11–18

    Article  CAS  PubMed  Google Scholar 

  • Ping Y, Ogawa W, Kuroda T, Tsuchiya T (2007) Gene cloning and characterization of KdeA, a multidrug efflux pump from Klebsiella pneumoniae. Biol Pharm Bull 30(10):1962–1964

    Article  CAS  PubMed  Google Scholar 

  • Platt D (1988) Memoire sur la fermentation appelee lactique (Louis Pasteur). Del Med J 60(1):23–24

    CAS  PubMed  Google Scholar 

  • Putman M, Koole LA, van Veen HW, Konings WN (1999) The secondary multidrug transporter LmrP contains multiple drug interaction sites. Biochemistry 38(42):13900–13905

    Article  CAS  PubMed  Google Scholar 

  • Saidijam M, Benedetti G, Ren Q, Xu Z, Hoyle CJ, Palmer SL, Ward A, Bettaney KE, Szakonyi G, Meuller J, Morrison S, Pos MK, Butaye P, Walravens K, Langton K, Herbert RB, Skurray RA, Paulsen IT, O’Reilly J, Rutherford NG, Brown MH, Bill RM, Henderson PJ (2006) Microbial drug efflux proteins of the major facilitator superfamily. Curr Drug Targets 7(7):793–811

    Article  CAS  PubMed  Google Scholar 

  • Schindler BD, Jacinto P, Kaatz GW (2013) Inhibition of drug efflux pumps in Staphylococcus aureus: current status of potentiating existing antibiotics. Future Microbiol 8(4):491–507. doi:10.2217/fmb.13.16

    Article  CAS  PubMed  Google Scholar 

  • Smith KP, Kumar S, Varela MF (2009) Identification, cloning, and functional characterization of EmrD-3, a putative multidrug efflux pump of the major facilitator superfamily from Vibrio cholerae O395. Arch Microbiol 191(12):903–911. doi:10.1007/s00203-009-0521-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tattelman E (2005) Health effects of garlic. Am Fam Phys 72(1):103–106

    Google Scholar 

  • Varela MF, Kumar S, He G (2013) Potential for inhibition of bacterial efflux pumps in multidrug-resistant Vibrio cholerae. Indian J Med Res 138(3):285–287

    PubMed  PubMed Central  Google Scholar 

  • Vijaya K, Ananthan S (1997) Microbiological screening of Indian medicinal plants with special reference to enteropathogens. J Altern Complement Med 3(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ma S (2010) Efflux pump inhibitors: a strategy to combat P-glycoprotein and the NorA multidrug resistance pump. ChemMedChem 5(6):811–822. doi:10.1002/cmdc.201000006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Gary Calton for helpful comments. This work was supported by an Internal Research Grant (ENMU) and by the US Department of Education, HSI STEM, P031C110114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Varela.

Additional information

Communicated by Yusuf Akhter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruns, M.M., Kakarla, P., Floyd, J.T. et al. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract. Arch Microbiol 199, 1103–1112 (2017). https://doi.org/10.1007/s00203-017-1378-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1378-x

Keywords

Navigation