Skip to main content
Log in

The calmodulin gene in Neurospora crassa is required for normal vegetative growth, ultraviolet survival, and sexual development

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

We isolated a Neurospora crassa mutant of the calmodulin (cmd) gene using repeat-induced point mutation and studied its phenotypes. The cmd RIP mutant showed a defect in growth, reduced aerial hyphae, decreased carotenoid accumulation, a severe reduction in viability upon ultraviolet (UV) irradiation, and a fertility defect. Moreover, meiotic silencing of the cmd gene resulted in a barren phenotype. In addition, we also performed site-directed mutational analysis of the calcium/calmodulin-dependent kinase-2 (Ca2+/CaMK-2), a target of the CaM protein encoded by the cmd gene. The camk-2 S247A and the camk-2 T267A mutants in a homozygous cross, or in a cross with a Δcamk-2 mutant, displayed an intermediate phenotype, suggesting that serine 247 and threonine 267 phosphorylation sites of the Ca2+/CaMK-2 are essential for full fertility in N. crassa. Therefore, CaM in N. crassa is required for normal vegetative growth, UV survival, and sexual development. Additionally, serine 247 and threonine 267 phosphorylation sites are important for the Ca2+/CaMK-2 function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193. doi:10.1146/annurev.bi.56.070187.001111

    Article  CAS  PubMed  Google Scholar 

  • Bhat A, Tamuli R, Kasbekar DP (2004) Genetic transformation of Neurospora tetrasperma, demonstration of repeat-induced point mutation (RIP) in self-crosses and a screen for recessive RIP-defective mutants. Genetics 167:1155–1164. doi:10.1534/genetics.103.025171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambareri EB, Jensen BC, Schabtach E, Selker EU (1989) Repeat-induced G-C to A-T mutations in Neurospora. Science 244:1571–1575. doi:10.1126/science.2544994

    Article  CAS  PubMed  Google Scholar 

  • Capelli N, Tuinen DV, Perez RO, Arrighi JF, Turian G (1993) Molecular cloning of a cDNA encoding CaM from Neurospora crassa. FEBS Lett 321:63–68. doi:10.1016/0014-5793(93)80622-2

    Article  CAS  PubMed  Google Scholar 

  • Charp PA (1987) DNA repair in human cells: method for the determination of calmodulin involvement. Methods Enzymol 139:715–730. doi:10.1016/0076-6879(87)39122-0

    Article  CAS  PubMed  Google Scholar 

  • Colbran RJ, Soderling TR (1990) Calcium/calmodulin-independent autophosphorylation sites of calcium/calmodulin-dependent protein kinase II. Studies on the effect of phosphorylation of threonine 305/306 and serine 314 on calmodulin binding using synthetic peptides. J Biol Chem 265:11213–11219

    CAS  PubMed  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA 103:10352–10357. doi:10.1073/pnas.0601456103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox JA, Ferraz C, Demaille JG, Perez RO, van Tuinen D, Marme D (1982) Calmodulin from Neurospora crassa. General properties and conformational changes. J Biol Chem 257:10694–10700

    CAS  PubMed  Google Scholar 

  • Cruzalegui FH, Kapiloff MS, Morfin JP, Kemp BE, Rosenfeld MG, Means AR (1992) Regulation of intrasteric inhibition of the multifunctional calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci USA 89:12127–12131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies SA, Terhzaz S (2009) Organellar calcium signalling mechanisms in Drosophila epithelial function. J Exp Biol 212:387–400. doi:10.1242/jeb.024513

    Article  CAS  PubMed  Google Scholar 

  • Davis RH, De Serres FJ (1970) Genetic and microbial research techniques for Neurospora crassa. Methods Enzymol 17:79–143. doi:10.1016/0076-6879(71)17168-6

    Article  Google Scholar 

  • Deka R, Kumar R, Tamuli R (2011) Neurospora crassa homologue of neuronal calcium sensor-1 has a role in growth, calcium stress tolerance, and ultraviolet survival. Genetica 139:885–894. doi:10.1007/s10709-011-9592-y

  • Deka R, Tamuli R (2013) Neurospora crassa ncs-1, mid-1 and nca-2 double-mutant phenotypes suggest diverse interaction among three Ca2+ -regulating gene products. J Genet 92:559–563

    Article  PubMed  Google Scholar 

  • Gadd GM (1994) Signal transduction in fungi. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 183–210

    Google Scholar 

  • Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA cloning: a practical approach, 1st edn. IRL Press, Oxford, pp 109–135

    Google Scholar 

  • Hanson PI, Schulman H (1992) Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase analyzed by site-directed mutagenesis. J Biol Chem 267:17224–172161

  • Hanson PI, Kapiloff MS, Lou LL, Rosenfeld MG, Schulman H (1989) Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron 3:59–70. doi:10.1016/0896-6273(89)90115-3

    Article  CAS  PubMed  Google Scholar 

  • Higuchi S, Tamura J, Giri PR, Polli JW, Kincaid RL (1991) Calmodulin-dependent protein phosphatase from Neurospora crassa. Molecular cloning and expression of recombinant catalytic subunit. J Biol Chem 266:18104–18112

    CAS  PubMed  Google Scholar 

  • Hoffman L, Stein RA, Colbran RJ, Mchaourab HS (2011) Conformational changes underlying calcium/calmodulin-dependent protein kinase II activation. EMBO J 30:1251–1262. doi:10.1038/emboj.2011.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irelan JT, Selker EU (1997) Cytosine methylation associated with repeat-induced point mutation causes epigenetic gene silencing in Neurospora crassa. Genetics 146:509–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Nelson MA (2005) Molecular and functional analyses of poi-2, a novel gene highly expressed in sexual and perithecial tissues of Neurospora crassa. Eukaryot Cell 4:900–910. doi:10.1128/EC.4.5.900-910.2005

  • Kim YK, Li D, Kolattukudy PE (1998) Induction of Ca2+-calmodulin signaling by hard-surface contact primes Colletotrichum gloeosporioides conidia to germinate and form appressoria. J Bacteriol 180:5144–5150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Tamuli R (2014) Calcium/calmodulin-dependent kinases are involved in growth, thermotolerance, oxidative stress survival, and fertility in Neurospora crassa. Arch Microbiol 196:295–305. doi:10.1007/s00203-014-0966-2

    Article  CAS  PubMed  Google Scholar 

  • Lamb TM, Vickery J, Bell-Pedersen D (2013) Regulation of gene expression in Neurospora crassa with a copper responsive promoter. G3 (Bethesda) 3:2273–2280. doi:10.1534/g3.113.008821

    Article  Google Scholar 

  • Laxmi V, Tamuli R (2015) The Neurospora crassa cmd, trm-9, and nca-2 genes play a role in growth, development, and survival in stress conditions. Genom Appl Biol 6:1–8. doi:10.5376/gab.2015.06.0007

    Google Scholar 

  • Lin CR, Kapiloff MS, Durgerian S, Tatemoto K, Russo AF, Hanson P, Schulman H, Rosenfeld MG (1987) Molecular cloning of a brain-specific calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci USA 84:5962–5966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( 2^{{ - \vartriangle \vartriangle \text{C}_{\text{T}} }} \) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

  • Margolin BS, Freitag M, Selker EU (1997) Improved plasmids for gene targeting at the his-3 locus of Neurospora crassa by electroporation. Fungal Genet Newsl 44:34–36

    Article  Google Scholar 

  • McCluskey K, Wiest A, Plamann M (2010) The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research. J Biosci 35:119–126

    Article  CAS  PubMed  Google Scholar 

  • Melnick MB, Melnick C, Lee M, Woodward DO (1993) Structure and sequence of the calmodulin gene from Neurospora crassa. Biochim Biophys Acta 1171:334–336. doi:10.1016/0167-4781(93)90079-S

    Article  CAS  PubMed  Google Scholar 

  • Meyer T, Hanson PI, Stryer L, Schulman H (1992) Calmodulin trapping by calcium–calmodulin-dependent protein kinase. Science 256:1199–1202. doi:10.1126/science.256.5060.1199

    Article  CAS  PubMed  Google Scholar 

  • Miller SG, Patton BL, Kennedy MB (1988) Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2+-independent activity. Neuron 1:593–604. doi:10.1016/0896-6273(88)90109-2

    Article  CAS  PubMed  Google Scholar 

  • Murray NE, Perkins DD (1963) Stanford Neurospora methods. Neurospora Newsl 4:21–25

  • Ortega Perez R, Van Tuinen D, Marmé D, Cox JA, Turian G (1981) Purification and identification of calmodulin from Neurospora crassa. FEBS Lett 133:205–208. doi:10.1016/0014-5793(81)80506-6

  • Ouyang S, Beecher CN, Wang K, Larive CK, Borkovich KA (2015) Metabolic impacts of using nitrogen and copper-regulated promoters to regulate gene expression in Neurospora crassa. G3 (Bethesda) 5:1899–1908. doi:10.1534/g3.115.020073

    Article  Google Scholar 

  • Reig JA, Tellezinon MT, Flawia MM, Torres HN (1984) Activation of Neurospora crassa soluble adenylate cyclase by calmodulin. Biochem J 221:541–543. doi:10.1042/bj2210541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11:331–340

    CAS  PubMed  Google Scholar 

  • Ryan FJ, Beadle GW, Tatum EL (1943) The tube method of measuring the growth rate of Neurospora. Am J Bot 30:784–799

    Article  Google Scholar 

  • Sadakane Y, Nakashima H (1996) Light-induced phase shifting of the circadian conidiation rhythm is inhibited by calmodulin antagonists in Neurospora crassa. J Biol Rhythms 11:234–240. doi:10.1177/074873049601100305

    Article  CAS  PubMed  Google Scholar 

  • Sakai W, Ishii C, Inoue H (2002) The upr-1 gene encodes a catalytic subunit of the DNA polymerase zeta which is involved in damage-induced mutagenesis in Neurospora crassa. Mol Genet Genom 267:401–408. doi:10.1007/s00438-002-0671-8

    Article  CAS  Google Scholar 

  • Sakai W, Wada Y, Naoi Y, Ishii C, Inoue H (2003) Isolation and genetic characterization of the Neurospora crassa REV1 and REV7 homologs: evidence for involvement in damage-induced mutagenesis. DNA Repair 2:337–346. doi:10.1016/S1568-7864(02)00223-9

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417. doi:10.1105/tpc.002899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schworer CM, Colbran RJ, Keefer JR, Soderling TR (1988) Ca2+/calmodulin-dependent protein kinase II. Identification of a regulatory autophosphorylation site adjacent to the inhibitory and calmodulin-binding domains. J Biol Chem 263:13486–13489

  • Selker EU, Fritz DY, Singer MJ (1993) Dense nonsymmetrical DNA methylation resulting from repeat-induced point mutation in Neurospora. Science 262:1724–1728. doi:10.1126/science.8259516

    Article  CAS  PubMed  Google Scholar 

  • Shiu PK, Metzenberg RL (2002) Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics 161:1483–1495

  • Shiu PK, Raju NB, Zickler D, Metzenberg RL (2001) Meiotic silencing by unpaired DNA. Cell 107:905–916. doi:10.1016/S0092-8674(01)00609-2

    Article  CAS  PubMed  Google Scholar 

  • Smallwood HS, Lopez-Ferrer D, Eberlein PE, Watson DJ, Squier TC (2009) Calmodulin mediates DNA repair pathways involving H2AX in response to low-dose radiation exposure of RAW 264.7 macrophages. Chem Res Toxicol 22:460–470. doi:10.1021/tx800236r

    Article  CAS  PubMed  Google Scholar 

  • Suresh K, Subramanyam C (1997) A putative role for calmodulin in the activation of Neurospora crassa chitin synthase. FEMS Microbiol lett 150:95–100. doi:10.1111/j.1574-6968

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Katagiri S, Nakashima H (1996) Mutants with altered sensitivity to a calmodulin antagonist affect the circadian clock in Neurospora crassa. Genetics 143:1175–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swulius MT, Waxham MN (2008) Ca2+/calmodulin-dependent protein kinases. Cell Mol Life Sci 65:2637–2657. doi:10.1007/s00018-008-8086-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamuli R, Ravindran C, Kasbekar DP (2006) Translesion DNA polymerases Pol zeta, Pol eta, Pol iota, Pol kappa and Rev1 are not essential for repeat-induced point mutation in Neurospora crassa. J Biosci 31:557–564

    Article  CAS  PubMed  Google Scholar 

  • Tamuli R, Kumar R, Deka R (2011) Cellular roles of neuronal calcium sensor-1 and calcium/calmodulin-dependent kinases in fungi. J Basic Microbiol 51:120–128. doi:10.1002/jobm.201000184

    Article  CAS  PubMed  Google Scholar 

  • Tamuli R, Kumar R, Srivastava DA, Deka R (2013) Calcium signaling. In: Kasbekar DP, McCluskey K (eds) Neurospora: genomics and molecular biology. Caister Academic Press, Norfolk, pp 35–57

    Google Scholar 

  • Tamuli R, Deka R, Borkovich KA (2016) Calcineurin subunits A and B interact to regulate growth and asexual and sexual development in Neurospora crassa. PLoS ONE 11:e0151867. doi:10.1371/journal.pone.0151867

    Article  PubMed  PubMed Central  Google Scholar 

  • Tellezinon MT, Ulloa RM, Glikin GC, Torres HN (1985) Characterization of Neurospora crassa cyclic AMP phosphodiesterase activated by calmodulin. Biochem J 232:425–430. doi:10.1042/bj2320425

    Article  CAS  Google Scholar 

  • Tokumitsu H, Wayman GA, Muramatsu M, Soderling TR (1997) Calcium/calmodulin-dependent protein kinase kinase: identification of regulatory domains. Biochemistry 36:12823–12827

    Article  CAS  PubMed  Google Scholar 

  • Tokumitsu H, Muramatsu M, Ikura M, Kobayashi R (2000) Regulatory mechanism of Ca2+/calmodulin-dependent protein kinase kinase. J Biol Chem 275:20090–20095. doi:10.1074/jbc.M002193200

    Article  CAS  PubMed  Google Scholar 

  • Tuinen DV, Perez RO, Marme D, Turian G (1984) Calcium, calmodulin-dependent protein phosphorylation in Neurospora crassa. FEBS Lett 176:317–320. doi:10.1016/0014-5793(84)81187-4

    Article  Google Scholar 

  • Vogel HJ (1964) Distribution of lysine pathways among fungi: evolutionary implications. Am Nat 98:435–446

    Article  CAS  Google Scholar 

  • Westergaard M, Mitchell HK (1947) Neurospora V. A synthetic medium favoring sexual reproduction. Am J Bot 34:573–577. doi:10.2307/2437339

    Article  Google Scholar 

  • Zalokar M (1954) Studies on biosynthesis of carotenoids in Neurospora crassa. Arch Biochem Biophys 50:71–80. doi:10.1016/0003-9861(54)90010-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The FGSC generously waived charges for the Neurospora strains. The FGSC was supported by NSF Grant BIR-9222772. VL was supported by a Research Fellowship from the Ministry of Human Resource Development (MHRD), Government of India (GoI). We thank Professor Katherine A. Borkovich (Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, UC Riverside, CA, USA) for help in generating the N. crassa strains expressing the cmd gene under the P tcu-1 . We acknowledge partial financial supports from the IIT Guwahati, Department of Biotechnology, GoI (to RT; BT/PR3635/BCE/8/892/2012), the Indo-US Science and Technology Forum (to RT, 2013/30; http://www.iusstf.org/), and the National Institutes of Health (to KAB; http://www.nih.gov/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Tamuli.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laxmi, V., Tamuli, R. The calmodulin gene in Neurospora crassa is required for normal vegetative growth, ultraviolet survival, and sexual development. Arch Microbiol 199, 531–542 (2017). https://doi.org/10.1007/s00203-016-1319-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1319-0

Keywords

Navigation