Skip to main content
Log in

Understanding the host-adapted state of Citrobacter rodentium by transcriptomic analysis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Citrobacter rodentium (Cr) is a mouse pathogen that mimics many aspects of enteropathogenic Escherichia coli infections including producing attaching and effacing (A/E) lesions. Host-adapted (HA) Cr cells that are shed at the peak of infection have been reported to be hyper-infective. The exact mechanism underlying this phenomenon has remained elusive since the pathogen loses its HA ‘status’ immediately upon subculturing in laboratory media. We sequenced the entire transcriptome of Cr directly from the feces of infected mice and analyzed the gene expression pattern. We observed that the entire transcriptional machinery as well as several transcriptional regulators to be differentially expressed when compared with the transcriptome of cells grown on laboratory media. Major adhesion and effector genes, tir and eae, were highly expressed in HA along with many genes located on all five loci of enterocyte effacement regions (LEE 15). Notable absent among the HA expressed genes were 19 fimbrial operons and non-fimbrial adhesions and several non-LEE encoded effectors. These results demonstrate that host-adapted Cr has a unique transcriptome that is associated with increased host transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arunasri K, Adil M, Khan PA, Shivaji S (2014) Global gene expression analysis of long-term stationary phase effects in E. coli K12 MG1655. PLoS One 9:e96701

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagchi A (2015) Structural characterization of Fis: a transcriptional regulator from pathogenic Pasteurella multocida essential for expression of virulence factors. Gene 554:249–253

    Article  CAS  PubMed  Google Scholar 

  • Bhagwat AA, Bhagwat MA (2004) Comparative analysis of transcriptional regulatory elements of glutamate-dependent acid-resistance systems of Shigella flexneri and Escherichia coli O157:H7. FEMS Microbiol Lett 234:139–147

    Article  CAS  PubMed  Google Scholar 

  • Bhagwat AA, Phadke RP, Wheeler D, Kalantre S, Ram M, Bhagwat M (2003) Computational methods and evaluation of RNA stabilization reagents for genome-wide expression studies. J Microbiol Methods 55:399–409

    Article  CAS  PubMed  Google Scholar 

  • Bhagwat AA et al (2005) Characterization of enterohemorrhagic Escherichia coli strains based on acid resistance phenotypes. Infect Immun 73:4993–5003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhagwat AA, Ying ZI, Karns J, Smith A (2013) Determining RNA quality for NextGen sequencing: some exceptions to the gold standard rule of 23S to 16S rRNA ratio. Microbiol Discov. doi:10.7243/2052-6180-7241-7210

    Google Scholar 

  • Bhagwat AA, Ying ZI, Smith A (2014) Evaluation of ribosomal RNA removal protocols for Salmonella RNA-seq projects. Adv Microbiol 4:25–32

    Article  Google Scholar 

  • Bishop AL, Wiles S, Dougan G, Frankel G (2007) Cell attachment properties and infectivity of host-adapted and environmentally adapted Citrobacter rodentium. Microbes Infect 9:1316–1324

    Article  CAS  PubMed  Google Scholar 

  • Bradley MD, Beach MB, de Koning APJ, Pratt TS, Osuna R (2007) Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiology 153:2922–2940

    Article  CAS  PubMed  Google Scholar 

  • Brady MJ et al (2011) Enhanced actin pedestal formation by enterohemorrhagic Escherichia coli O157:H7 adapted to the mammalian host. Front Microbiol 2:226

    Article  PubMed  PubMed Central  Google Scholar 

  • Browning DF, Grainger DC, Busby SJW (2010) Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13:773–780

    Article  CAS  PubMed  Google Scholar 

  • Caballero-Flores GG, Croxen MA, Martinez-Santos VI, Finlay BB, Puente JL (2015) Identification and regulation of a novel Citrobacter rodentium gut colonization fimbria (Gcf). J Bacteriol 197:1478–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho B-K, Knight EM, Barrett CL, Palsson BØ (2008) Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. Genome Res 18:900–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins JW et al (2014) Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol 12:612–623

    Article  CAS  PubMed  Google Scholar 

  • Duprey A, Reverchon S, Nasser W (2014) Bacterial virulence and Fis: adapting regulatory networks to the host environment. Trends Microbiol 22:92–99

    Article  CAS  PubMed  Google Scholar 

  • García-Angulo VA et al (2012) A distinct regulatory sequence is essential for the expression of a subset of nle genes in attaching and effacing Escherichia coli. J Bacteriol 194:5589–5603

    Article  PubMed  PubMed Central  Google Scholar 

  • Geertz M et al (2011) Structural coupling between RNA polymerase composition and DNA supercoiling in coordinating transcription: a global role for the omega subunit? mBio 2:e00034-00011

    Article  Google Scholar 

  • Grant AJ, Farris M, Alefounder P, Williams PH, Woodward MJ, O’Connor CD (2003) Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Mol Microbiol 48:507–521

    Article  CAS  PubMed  Google Scholar 

  • Green ML, Karp PD (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen AM, Jin DJ (2012) SspA up-regulates gene expression of the LEE pathogenicity island by decreasing H-NS levels in enterohemorrhagic Escherichia coli. BMC Microbiol 12:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart E et al (2008) RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in Citrobacter rodentium. Infect Immun 76:5247–5256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakovleva J et al (2012) Fis regulates the competitiveness of Pseudomonas putida on barley roots by inducing biofilm formation. Microbiology 158:708–720

    Article  CAS  PubMed  Google Scholar 

  • Kelly A, Goldberg MD, Carroll RK, Danino V, Hinton JCD, Dorman CJ (2004) A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology 150:2037–2053

    Article  CAS  PubMed  Google Scholar 

  • Keseler IM et al (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39:D583–D590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Conners J, Gascoyne R (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Bihan G et al (2015) Transcriptome analysis of Escherichia coli O157:H7 grown in vitro in the sterile-filtrated cecal content of human gut microbiota associated rats reveals an adaptive expression of metabolic and virulence genes. Microbes Infect 17:23–33

    Article  PubMed  Google Scholar 

  • Li S, Dong X, Su Z (2013) Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling. BMC Genomics 14:520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delataCT) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lodato PB, Kaper JB (2009) Post-transcriptional processing of the LEE4 operon in enterohaemorrhagic Escherichia coli. Mol Microbiol 71:273–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luperchio SA, Schauer DB (2001) Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. Microbes Infect 3:333–340

    Article  CAS  PubMed  Google Scholar 

  • Maciąg A, Peano C, Pietrelli A, Egli T, De Bellis G, Landini P (2011) In vitro transcription profiling of the σS subunit of bacterial RNA polymerase: re-definition of the σS regulon and identification of σS-specific promoter sequence elements. Nucleic Acids Res 39:5338–5355

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallik P, Paul BJ, Rutherford ST, Gourse RL, Osuna R (2006) DksA is required for growth phase-dependent regulation, growth rate-dependent control, and stringent control of fis expression in Escherichia coli. J Bacteriol 188:5775–5782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandlik A, Livny J, Robins WP, Ritchie JM, Mekalanos JJ, Waldor MK (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10:165–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrell DS et al (2002) Host-induced epidemic spread of the cholera bacterium. Nature 417:642–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty BK, Kushner SR (2006) The majority of Escherichia coli mRNAs undergo post-transcriptional modification in exponentially growing cells. Nucleic Acids Res 34:5695–5704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mundy R, Pickard D, Wilson RK, Simmons CP, Dougan G, Frankel G (2003) Identification of a novel type IV pilus gene cluster required for gastrointestinal colonization of Citrobacter rodentium. Mol Microbiol 48:795–809

    Article  CAS  PubMed  Google Scholar 

  • Partridge JD, Sanguinetti G, Dibden DP, Roberts RE, Poole RK, Green J (2007) Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. J Biol Chem 282:11230–11237

    Article  CAS  PubMed  Google Scholar 

  • Petty NK et al (2010) The Citrobacter rodentium genome sequence reveals convergent evolution with human pathogenic Escherichia coli. J Bacteriol 192:525–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantitation in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith A, Bhagwat AA (2013) Hypervirulent-host-associated Citrobacter rodentium cells have poor acid tolerance. Curr Microbiol 66:522–526

    Article  CAS  PubMed  Google Scholar 

  • Steen JA et al (2010) Fis is essential for capsule production in Pasteurella multocida and regulates expression of other important virulence factors. PLoS Pathog 6:e1000750

    Article  PubMed  PubMed Central  Google Scholar 

  • Tauschek M et al (2010) Transcriptional analysis of the grlRA virulence operon from Citrobacter rodentium. J Bacteriol 192:3722–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinella D, Potrykus K, Murphy H, Cashel M (2012) Effects on growth by changes of the balance between GreA, GreB, and DksA suggest mutual competition and functional redundancy in Escherichia coli. J Bacteriol 194:261–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel U, Jensen KF (1997) NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA. J Biol Chem 272:12265–12271

    Article  CAS  PubMed  Google Scholar 

  • Wickham ME, Brown NF, Boyle EC, Coombes BK, Finlay BB (2007) Virulence is positively selected by transmission success between mammalian hosts. Curr Biol 17:783–788

    Article  CAS  PubMed  Google Scholar 

  • Wiles S, Dougan G, Frankel G (2005) Emergence of a ‘hyperinfectious’ bacterial state after passage of Citrobacter rodentium through the host gastrointestinal tract. Cell Microbiol 7:1163–1172

    Article  CAS  PubMed  Google Scholar 

  • Wong ARC et al (2011) Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 80:1420–1438

    Article  CAS  PubMed  Google Scholar 

  • Yang J et al (2008) Bicarbonate-mediated transcriptional activation of divergent operons by the virulence regulatory protein, RegA, from Citrobacter rodentium. Mol Microbiol 68:314–327

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Tauschek M, Hart E, Hartland EL, Robins-Browne RM (2010) Virulence regulation in Citrobacter rodentium: the art of timing. Microb Biotechnol 3:259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen D. Smith.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2016_1191_MOESM1_ESM.pptx

Principle component analysis of RNAseq samples. Cr was grown under three conditions: aerobic LB media grown cells, host-adapted cells, and anaerobic fecal media grown cells (n=3/group). A 3D plot was generated for comparison of all three growth conditions using the coefficient of variation of the eigenvalues of the PCA analysis. Hierarchical clustering of genes of Cr revealed the spatial partitioning of sample replicates across growth conditions indicating that unique gene expression patterns were present in each group (PPTX 74 kb)

203_2016_1191_MOESM2_ESM.pptx

Comparison of gene expression levels by RNASeq and qRT-PCR. The figure compares the mean fold change in gene expression obtained from RNAseq vs. qRT-PCR data under host-adapted and LB conditions (n=3-4). Primers used for individual genes are as indicated in Table S1. Regression analysis was done using SigmaPlot version 11 (Systat Software, Germany) (PPTX 55 kb)

Supplementary material 3 (XLSX 13 kb)

Supplementary material 4 (XLSX 9 kb)

Supplementary material 5 (XLSX 718 kb)

Supplementary material 6 (XLSX 27 kb)

Supplementary material 7 (XLSX 18 kb)

Supplementary material 8 (XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, A.D., Yan, X., Chen, C. et al. Understanding the host-adapted state of Citrobacter rodentium by transcriptomic analysis. Arch Microbiol 198, 353–362 (2016). https://doi.org/10.1007/s00203-016-1191-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1191-y

Keywords

Navigation